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Preface

The purpose of this study, was to design and fabricate
test apparatus and test vehicles for conducting electro-
migration analysis in both the scanning and transmission
electron microscopes (SEM and'TEM) respectively. The
apparatus fabricated for the SEM maintains a constant
temperature of 86 K while electromigration studies are
conducted in the SEM. The TEM apparatus fabricated allows
crystalline analysis through TEM generated diffraction pat-
terns and bright field micrographs. Prior to this thesis
the temperature variable had not been adequately controlled
and no TEM electromigration work had been conducted in situ,

We would like to thank several individuals, for their
valuable help and guidance. Our sincere thanks goes to our
thesis committee, Major Donald R. Kitchen who gave timely
guidance and the right amount of latitude, and Dr Theodore
E. Luke for his assistance in writing this document. HWe
would like to thank to Mr. Ralph Omlor, Dr. Dave Mattie, and
Mr. Don Smith for their technical support in working with
the microscopes. We extend our appreciation to Ms. Cheryl
Heidenreich for her photographic support of the thesis. We
are grateful to Lt. Joseph Grzyb and Mr. Larry Callahan for
their support with the fabrication and packaging of several
test vehicles used in our research. We would like to thank
the AFIT Fabrication Shop, headed by Mr. Carl Shortt, which

built the hardware required for this effort.
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Jersey, for his technical advice on our work, and Shela
Vaidya, also of Bell Laboratories, for providing a test lj{
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Abstract o

This investigation has resulted in the development of

apparatus and test vehicles for use in conducting

electromigration research in situ both in the scanning and R
transmission electron microscopes (SEM and TEM)
respectively. The unique design of test vehicles and

modification of equipment allows for the experimental use of ¢

a prototype Joule-Thompson microminiature refrigerator. The

refrigerator inside the SEM allows for the direct

observation of electromigration experiments while T
controlling the temperature of the test vehicle. Research
was performed in a temperature range lower than any previous
effort, (93 K to 373 K).

The patent-pending design and fabrication of the TEM
specimen probe and its associated test vehicles provides the
means for conducting in situ research into the crystalline
structures and'érystallographic changes associated with

electromigration. The design provides the previously

unattainable ability to monitor structure changes during the
electromigration process in a non-contaminating environment
which exists in the TEM.

Finally, the research of this thesis has established the

foundation for ongoing reliability studies at AFIT.
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ELECTRON MICROSCOPY OBSERVATION OF ELECTROTRANSPORT

I. INTRODUCTION

Problem Statement

With the maturing of Very Large Scale Integrated (VLSI)
technology, decreasing feature size and increasing gate densi-
ties are resulting in higher current densities which are ex-
ceeding 106A/cm2 and linestripes which are reaching into the
submicron range. In this environment, electromigration can
cause unwanted open or short circuits in thin films. Thus
electromigration in thin film conductors has serious implica-
tions on the reliability of any integrated circuit.

Although enormous amounts of research effort has been put
into the study of electromigration, (1-3; 5-14; 16-20; 21; 22;
30-35; 38-43; U46; U48; 50-55; 57; 58; 68-T1; T4-92; 99-103;
107-110), most research has been conducted at high tempera-
tures and the exact method of void nucleation and hillock
growth is as yet not understood (16; 22; 30; 39; 48; 52; 86;
98). The effects of low temperature (T below one half the
melting point temperature) and the crystalline structures
involved in electromigration have not as yet been researched
thoroughly (5; 14; 27; 28; 38; 54; 58; 84; 87; 94; 1C7; 109).
Even with the large volume of published material, these areas
have not been addressed sufficiently, and are awaiting further

research.
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The objective of this thesis was to advance electro-
migration research capabilities in the areas of low temperature
environment and crystalline morphology through the design and
fabrication of test equipment and thin film test vehicles for
use in scanning and transmission electron microscope research.

Specifically, the design, fabrication, and testing of
equipment and test samples, were accomplished to conduct both
low temperature electromigration experiments in the SEM and
crystalline structure research in the TEM. Both designs
allowed electromigration experiments to be conducted in situ,
or within the vacuum environment of the microscope. The exer-

cise of this equipment led to numerous important achievements.

Major Results

This thesis research resulted in the successful design,
fabrication, and testing of apparatus and associated test vehi-
cles which permit viable research and observation of electro-
migration in both the SEM and TEM. Specifically, test vehicles
were designed and constructed to take advantage of simple
geometries and control of dimensions. The MOSIS test vehicle
was successfully used on the cold stage for the in-situ obser-
vation of electromigration at c¢ryogenic temperatures. The
unique Bridge Test Vehicle was constructed by combining a
number of techniques. The process yielded the first successful
suspended linestripe available for research at the institute.
The bridge test vehicle, utilizing the patent pending MARK II

TEM Holder, enabled the unique observation of crystallographic
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e changes in the morphology of a powered linestripe.

A cold stage for the in-situ viewing of a powered line-
stripe at cryogenic temperatures was designed. The proto-
type refrigerators passed vacuum testing down to a pressure
of 10-% torr. This represents a breakthrough in the techno-
logy of high vacuum glues which were used to hold the re-

frigerator together. The prototype microminiature refrig-

erator system incorporated into the SEM allows electromigra-
tion testing to be accomplished in situ while isolating a

critical variable in electromigration studies, the tempera- ﬁ‘ﬁ

ture. With the temperature of a linestripe suppressed, the
ii effects of high current density ( > 3x1054/¢cm2), on the L

stripe structure were observed. Electromigration damage was

fié sustained by a linestripe at cryogenic temperatures (93 K). o
The patent pending design of the MARK II Holder used in E%i

conjunction with the Bridge Test Vehicle and its suspended ;E?

Aluminum linestripe, devoid of an interfering substrate, :::

yields excellent data and observation of electromigration %ig

Fagr)

A
‘.-" > ' -/' '4‘, v

and the study of its crystallographic composition through

bright field and dark field photomicrographs and diffraction
patterns. The data obtained showed that the morphology of a
linestripe under stress will change due to a high current

density ( > 106A/cm2). These results were obtained on the

basis of simplifying assumptions which allowed for a concen-

trated effort in specific areas. jfif
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Assumptions R

The following assumption apply: N

&_ .w‘.T

1. A key element for the existence of electromigration e

R

6 x"".':-

is a current density above 10%a/cm?. R

ey

[l Y

2. Increased temperatures due to joule heating enhance sl

[outt e |

and accelerate electromigration in thin film conductors. ‘*_

3. The primary force in the transport of metal atoms :

is the electron wind or the momentum transfer from the Pt
electron current to the conductor ions. ’

4, The presence of temperature gradients, electric fﬁ%

forces, and structural factors all lead to the possibility ;’i'

of electromigration. These multiple causes make the contri-

bution of any one factor difficult to calculate.

Scope

s; The scope of this research is limited to samples com- 3§§
?; posed of aluminum films deposited by evaporation on Silicon §§§
.- LSS
-_ wafers. e
; Design and fabrication of equipment and test samples :3.
E are limited to modifications of both existing equipment and -
{é, procedures for the sake of simplicity and ease of implemen- ﬁ,;
E tation and duplication. Testing of the prototype micro- f1
f miniature refrigerator is limited to vacuum testing of the {%

quartz cold stage down to 10‘6 torr. Cold temperature

studies are limited to temperatures between 88 K and 373 K. ﬁ;f

Finally, all current densities were maintained at or above _ o

1064/cn2.
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General Approach

The study consisted of two parallel research efforts (

e 1)
with five major variations. The first part was the design Esgg
and fabrication of aluminum thin film test vehicles gﬁt
utilizing photolithography techniques and existing metaliza- ??_;
tion masks. These results are included in chapter III. ;i;;

The second step was to design and construct two digital ;;::
timers which would measure the elapsed time in minutes of T?:c
applied current to the test vehicle. This device is dis- ZEE;
cussed in Appendix C. Zaif

S

The third step is the point in which the study 'i |
branches into two research efforts., One path is the design,
fabrication, and testing of an instrument which maintains
the test stripe at a constant low temperature while con- ..‘
ducting SEM electromigration studies in situ. The second :

branch of the third step is the design, fabrication, and

testing of a sample probe and associated thin film test

i
L

vehicle for use during in situ TEM electromigration studies. ggi
This apparatus is also discussed in chapter III. E&f'

The final'step in this research was to document the ::ﬂ
findings of the investigation and draw conclusions con- Ejgj
cerning the feasibility of in situ electromigration re- Z%E;
search. Recommendations for further study were then made. :;:
Major Equipment Used ;ﬁ;:

The equipment used for this study includes the Nano- ;i*«

metrics CWIC Scan 104 Scanning Electron Microscope (SEM) and



the Jeol 100CX Transmission Electron Microscope (TEM). The
temperature research conducted in the SEM was accomplished
using a prototype MMR Technology Microminiature Refrigerator,
while the TEM studies utilized a redesigned Jeol EM-SHH
sample insertion probe. During the photolithographic pro-
cessing of the thin film test vehicles the aluminum was
applied by evaporative deposition using a CVC Vacuum System
and mask alignment and wafer exposure was accomplished using

a Cobilt Mask Aligner, Model Ca 200.

Sequence of Presentation

This thesis is presented in the following chronological
order. There are four main sections, the background, the
test vehicle and instrument fabrication and testing, the
discussion of the results, and the conclusions.

Chapter II provides background information for this
thesis., It discusses the theories used in this research
which were extracted from the literature. It includes a
short discussion on the cause and effect of electromigration
in thin film conductors.

A descripiion of how the test vehicles used were de-
signed and fabricated and what modifications to existing
microscope equipment were made to conduct electromigration
in situ is presented in chapter III. Section III-1 dis-
cusses the test vehicle fabrication. Section III-2 presents
the design, fabrication, and testing of the cold stage

adaptation used in the SEM. Section III-3 describes the

I-6
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experimental setup and procedure used for the SEM., Section III-

4 describes the design, modification, and testing of the patent

pending MARK II Holder used in the TEM. Section III-5 describe

the experimental setup and procedure used for the TEM.

Chapter IV presents the results of the in situ electro-
migration testing. Section IV-1 discusses the SEM results
while section IV-2 details the TEM results.

Chapter V presents the conclusions drawn from the design
and testing results in Chapter IV, and offers recommendations
for further study.

Finally, the appendices contain supplemental information
detailing the unique equipment and procedures utilized.
Appe..1ix A details the fabrication procedure for the aluminum
Bridge Test Vehicle. Appendix B shows the design and fabrica-
tion of the production microminiature refrigerator. Appendix
C depicts the timer which was designed and fabricated to

measure elapsed time in minutes.
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II. BACKGROUND

The existence of electromigration in thin films has

been acknowledged since the early sixties. 1Initial interest

had been of a theoretical nature as electromigration had

little impact on circuit reliability. With the maturing of

VLSI technology, gate densities are exceeding 10000 gates

i per square centimeter. Current densities are exceeding ’_"rj
f 1064/cm? while linestripes are reaching into the submicron Eiig
; range. In this environment, electromigration can cause i
%; unwanted open or short circuits in thin films. This has iﬁjj;

serious implications on the reliability of any integrated ;f;b

circuit (33:113; 57:208). ﬂ

';— The earliest integrated circuits experienced little in _' _!
the way of poor reliability due to electromigration. Gate
densities in the late sixties were very low. A typical

metal line width exceeded 10 microns and carried a current

density that was well below 104a/em2. Cracks and holes in H?lg
the metal stripes were of little consequence due to the j&ﬁﬂ
width of the stripe and its spacing with any neighboring

stripes.

As the integrated circuit industry entered the
eighties, the emphasis was on gate density (61:v). The

general trend is illustrated in Figure 1.

IT1-1
.
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’ Figure 1. Integrated Circuit Industry Trends

N Source: (72:772)

i G

Eé Small Scale Integration (SSI) of less than 10 gates on a

3 chip were to be replaced by denser Medium Scale Integration
i (MSI). SSI chips were yielding to both MSI technology of
g: densities from 10 to 100 gates per chip, and LSI technology
Ef of gate densities from 100 to 1000. Very Large Scale Inte-
i gration (VLSI) is promised to yield chips with device densi-
E} ties that rang; from 1000 to 10,000 gates per square centi-
; meter (60:31; 72:772). By 1990, millions of transistors may
; be fabricated on a chip with feature sizes smaller than the
E% wavelength of visible light (61:v).

Eg Decreased feature size and increased gate density re-
~

;; sults in higher current densities for the circuit compo-

nents. The higher current densities pose new problems of
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temperature control on the chip and an increase in the prob-
ability of electromigration, both of which have serious

implications for chip reliability (13:215; 33:114; 57:208).

Electromigration Theories

Electromigration is identified as the mass transport of
atoms in a conductor under a current stress (2:2381; 9:339;
12:485; 25:244; 34:51; 35:69; 36:751; 42:76; 50:25; 87:309;
91:937; 103:2; 105:114)., Numerous theories have been pro-
posed, with most relating electromigration to temperature
and the current density of the conductor. An atom in a
lattice is usually represented using the potential well
model (8:143; 26:1410). Early theories relate the effects
of thermal and electric forces on an atom in the crystal
lattice (42; 81). Later theories introduce the concept of
an atomic flux and the effect of varying structure and
mobilities on it (5; 8; 9; 26). These theories represent a
basis for the current understanding of electromigration.

Potential Well Model. In a conductor at a uniform

temperature above absolute zero, an atom in the lattice can
be viewed as being in the bottom of a potential well (8:142; f*f’
9:339; 26:1410). Energy is required to excite the atom out

of the well where it is unrestrained by neighboring atoms in

the lattice structure. Thermal excitation will excite a
small percentage of atoms at any given temperature out of
the well to what is known as the saddle point shown in

Figure 2a.
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Figure 2., Saddle Point
Source:(26:1410)

Assume that an atom is excited from its normal position A to
saddle point 0 as shown in Figure 2b. At the saddle point,
the displaced atom is squeezed between two neighboring atons
and must eventually return to a lower energy state.
Assuming a vacancy or hole in position B, the atom at the
saddle will have an equal probability of moving back to A or

going on to B (9:339; 26:1411). Under an external bias such

as a temperature gradient, the probability of movement
toward any particular available direction will be influenced

by the bias. An increasing mobility going from A to B would

increase the probability of an atom at the saddle point
moving toward B and decrease the probability of movement

toward A.
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Temperature Forces. In a thin film conductor that is

carrying a current, the potential presence of a temperature
gradient can be shown (9:343; 32:15; 109:1777). Typlcally,
the center of a thin stripe will be hotter than either end,
due to the heat sink effects of the end contacts and the
less than ideal heat sinking characteristics of the sub-

strate (25:254; 109:1777). In a region of a high tempera-

ture gradient, (104 K/cm), an atom in the lattice is subject

to a force
F = (Q"/T)9T (1)

where Q' is the energy flow per unit mass transported
(18:12; U43:268; 88:15)., While an atom in the potential well
may not move, an atom at a saddle point may experience
movement in the direction of F toward a nearby vacancy in
the lattice. An atom that jumps to a vacancy may increase
or diminish the value of Q' by interaction with phonons. A
Jump to a vacancy may add or subtract energy to the local
system dependent on the energy of the atom relative to the
energy required to make the transition to the vacancy.
Atomic mobilit& is related to temperature and is affected by
the existence of a temperature gradient. The thermal
migration of matter due to a temperature gradient is known
as the Soret Effect or simply thermomigration (18:12;
23:1410; 43:268; 88:15). Thermomigration is often found in

current carrying conductors.
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Electric Forces. The structure of a conductor that is

carrying a current is subject to an electric field which
extends from the cathode to the anode (87:309; 88:4). The
individual metal ions feel a force from this field which

tries to move them from their present position toward the

cathode, as shown in Figure 3.

ELECTRON MOVEMENT

'. \ ¢ FIELD ION
N\ P N\
CATHODE % \_ — \\\ ANODE
N —_ 7\
i e N \
ELECTRON WIND >
i Figure 3. Thin Film Forces

f The effect of this electrostatic interaction is dependent on
the magnitude of the field and on the diffusivity of the
ions, The ion diffusivity is related to the conductor temp~-

) erature by the Einstein relation . ‘
]

D = ukT/z% (2) L

) where Z"e is the effective charge of the ion, k is the

Boltzmann constant, and T is the temperature in Kelvin
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(23:1410; 62:324). The mobility u, of an ion within the
conductor structure is typically low. With this low mo-
bility, high activation energy 1s necessary to initiate mass
transport. The activation energy required to account for
the atomic flux observed during electromigration would place
the temperature above the melting point of the conductor.
Additionally, the flow of atoms has been observed to move in
the direction toward the anode, which is not explained by
the fileld ion effect (8:142; 9:339; 12:485; 18:7). The
volume of mass transported is not explained by the field ion
effect either. It is apparent that other mechanisms are at
work besides electrostatic interaction.

The mass flux of conductor atoms has been observed to
move from the cathode to the anode (12:485; 23:1410; 46:969;
77:201). This movement is opposite the direction of move-
ment attributed to the field ion effect, and is caused by a
dominant force, the electron wind. The conductor ions ex-
perience a momentum transfer from the electron current that
1s travelling down the stripe. The lons experience a force
that is analogous to the force felt by a leaf on a tree that
is being blown-ﬁy the wind. The magnitude of the force is
dependent on the current density, The effect of the
"electron wind" on an individual ion depends on the mobility

of the ion. An expression for the atomic flux Ja 1is

Ja = (ND/kT)z%ePj (3)
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with j being the current density, N is the concentration of
ions, and D is the atomic diffusion coefficient,. z%e is the
effective charge of the ion, which is a function of the
electron wind relative to the electrostatic force inter-
action. p is the resistivity of the conductor (1:3954;
12:485; 85:2533).

In a thin film conductor, all three of the effects,
thermal, field ion, and electron wind are at work, making
the impact of any one hard to distinguish. Besides the
electric and temperature effects, the very structure of the
thin film has an effect on the probability of electromigra-
tion damage.

Structural Effects. A thin film that is carrying a

current will experience a stress that is a result of that
current. Joule heating effects will cause thermal gradients

within the film which can lead to the Soret effect. The

field ion effect and the presence of the "electron . wind"
will also be felt by the film lattice structure. These

forces can give rise to an atomic flux that travels down the

conductor. A flux alone cannot cause damage to the line-

stripe. The st;uctural interaction with the atomic flux has
a significant role in the damage to the stripe. If an _?{;E
atomic flux is established by a combination of thermal and b:';
electrical effects, there will be a net flow of atoms

through any unit volume. The flux in should equal the flux

out. Should the flux per unit volume out be different from R

the flux per unit volume in, then a redistribution of the
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e atoms in the lattice will occur. From the equation

- - S
Ja = pF (4) R

The atomic flux is related to the applled force F_‘- and the

atomic mobility m (7:24; 23:1410; U42:76). The divergence of
the flux,i% Wwill be zero if the total concentrationof

metal ions remains constant for a given volume (18:8). At

{
_I locations along the film where there is a discontinuity in
the atomic flux, there will be either a buildup or a deple-

tion of material, as shown in Figure U4 (8:145; 11:264;

33:114; 68:116). pwi:
oe s
. . !

DEPLETION ACCUMULATION

© i
(39 Ji e\

HOLES HILLOCKS

CATHODE ANODE

A,
N\

I

Figure 4. Atomic Redistribution vs Mobility
Source: (34:52)

A change in the ion concentration over time for a given
volume means that dC/dt is non zero. Then the divergence of
the flux, del+*(Ja), i1s also non zero (11:264; 18:8), 1If

the applied force is assumed to remain constant along the
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film, a non zero flux divergence can be caused by changing
the mobility of the metal ion. Assume that the ion flux
divergence is the time rate of change of the ion concen-

tration for a given volume.

dCc/dt -del+(Ja) (5)

For one dimension,

dc/dt -dJa/dx (6)

Assuming that Ja is a functionm of both structure and temp-

erature, then

dC,/dt = -[(dJa/ds)(ds/dx) + (dJa/dT)(dT/dx)] (1)

Thus, the mobility of the lattice atoms can be affected by
temperature and structural discontinuities in the film
(5:881; 11:264; 18:9; 101:159)., The mobility is related to
the diffusivity and the temperature through the Einstein
relation. A typical thin film under current stress will
exhibit a temperature profile with a hot center section and

cool ends as shown in Figure 5 (25:256; 109:1777).
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Figure 5. Temperature Gradient of a Thin Film NCAL
Source: (25:256) :

In the area of positive temperature gradient, where T2 NN
is greater than T, eXperimental evidence has shown that B
o mass depletion can occur, due to a decrease in the atomic P

mobility, causing the flux in to be 1less than the flux out

per unit volume (8:143; 12:487; 23:1411), 1In the area of

negative temperature gradient, where T, is larger than Tg3: a

mass accumulation can occur since the flux out is less than o

the flux in (9:346; 12:487; 23:1411). A typical temperature

for activation of lattice diffusion would be between 150°C R

and 4500C with-; temperature gradient of 104 oC/cm (12:u488; i

75:264)., Flux divergences can arise from other factors

besides temperature gradients. S
Structural defects play an important role in flux :;F

divergence. Assuming that a thin film is composed of Ei

erystal grains with random orientations, lattice diffusion e

can occur in three locations; either within the crystal
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grain, on the surface, or on the grain boundary. Within the
crystal grain, the lattice organization is regular with few
vacancy sSites available for lattice diffusion by substi-

tution (8:142; 27:81). At the grain boundary however, the

regularity of the lattice is disrupted, yielding many
vacancies which lend themselves to substitutional diffusion

as shown in Figure 6.

YA,
7/,

-
b . \V

h (o BOUNDARIES

b’

b

s 2
i} Figure 6. Grain Boundaries Sﬁx
: 5
b -

=

i Experimental evidence suggests that the activation energy

K

..‘ for lattice diffusion within the crystal grain is much

higher than the energy required to initiate diffusion along

grain boundaries (75:264). The prevailing view is that the

primary location for damage is along grain boundaries

(5:880; 12:488; 46:968; 75:263; 80:513; 99:481).

Three damage mechanisms are attributable to structural
discontinuities, Mixed grain size, crystal orientation, and

boundary properties will have an effect on the mobility of
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migrating atoms., Of these, flux divergence or convergence
has been shown to be most l1ikely to occur at boundaries
where the periodicity of the lattice is severely disrupted
(5:880; 23:1415). The most severe disruption and the high-
est candidate for electromigration damage is the triple
point. A triple point is the point of intersection of three

grain boundaries as shown in Figure 7 (5; 34:52; 77:201).

TRIPLE POINT
\

Figure 7. Triple Point
Source: (34:51)

An atom at the triple point will experience a change of

mobility if it tries to diffuse through the lattice of the
grain in its path., The more likely event will be a change
in direction of the atom to proceed down the grain boundary.
The mobility will remain constant, but the force on the fw,!

charge will decrease by

F(ab) = F(cos(b)) (8) A
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where b is the angle of the grain boundary relative to the
electron flow force down the film (5:881; 23:1415; 24:272).
Migration has been shown to occur along the grain boundary
most aligned with the force down the film as shown in Figure

8 (24:272).

FLUX(Cos a)

3 FLUX IN a

Y

FLUX(Cos b)

Figure 8. Flux Divergence at a Triple Point
Source: (5:881)

Besides the boundary effects on mobility, the size of the : iti:
grain and the crystallographic orientation have an effect. -
Current that flows through a region of small sized grains
into a region of larger grains will experience a change in

mobility due to flux divergence (2:2383; 23:1413; 24:275).

Abrupt grain size changes in the film that can cause the
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flux divergence necessary to effect electromigration damage

are shown in Figure 9.

Figure 9. Abrupt Grain Size Changes
Source: (76:2383)

Analysis of the Brillouin zone for various crystallo-
graphic directions will show direction dependent mobilities
for a particular substance (62:237). Attardo noted the var-

iation in grains related to the conditions existent during

film deposition,

"The Al films deposited at 600°C were found to have
a predominately <111> orientation (98%), while
those deposited at 200°C had a mixed <111> and
<110> orientation. Transmission electron micro-
graphs of the two films... revealed a near grain

size of 1.2 and 7.8 microns for the 200°C and 500°C
Al films respectively." (2:2382)

The presence of temperature gradients, electric forces,
and structural factors all lead to the possibility of damage

due to electromigration. The multiple causes make the con-
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tribution of any one factor difficult to calculate. Figure
10 snows the result of these forces being exerted on a

conductor over the course of time (96),

WHISKER

Figure 10. Hillocks And Holes on an Aluminum Stripe, 600x
Source: (96)

Tne aluminum stripe experienced a current density of
10047202 at a temperature of approximately 1400C, After
about 25 hours of run time, the stripe exhibits the signs of

elezxtromigration. Numerous holes in the conductor structure
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are visible. The displaced matter appears in the lightly
colored deposits as an accumulation or hillock. The cross
sectional area of some portions of the stripe have de-
creased, which increases the current density on those areas
of metal that remain. Eventually, a number of holes will
combine and bridge all the way across the stripe, causing
failure by open circuit. The long thin protrusion from the
stripe is known as a whisker. It is a growth from the metal
which can have serious consequences. Should it grow out
away from the stripe, it could possibly reach a neighboring
stripe and cause a short circuit between the two. The exact
nature of whiskers is not known.

Figure 11 shows a closer view of migration damage

sustained by a conducting stripe,.
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Figure 11. Closeup of Electromigration Damage, 3000x
Source: (96)

The actual walls of the individual grains can be seen in the
hole. Matter from the hole migrates down the stripe and
then accumulatés at a point where the flux converges,

causing hillocks to form on the surface. The mechanism by

which matter is transported and deposited in the stripe is

still the subject of research.
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The experimental effort of this thesis required special

equipment. The in situ viewing of electromigration is not
new in itself, but the control of variables while observing
electromigration is a new frontier. To control variables
such as current density and temperature, the experimental
setup must start from the beginning with known parameters.
Test vehicles were acquired through various sources, with
known electrical, material, and geometric properties. The

SEM and the TEM were modified to accept prototype support

equipment and yield the desired data. Finally, experimental

procedure are established, for the conduct of in situ elec-

tromigration studies in both the SEM and the TEM.

III-1. Test Vehicles

Electromigration testing of actual integrated circuits
can become rather involved with questionable results. A

researcher typically has little or no control over the

manufacture of .the integrated circuit. Therefore, little 1is

known about the internal or crystalline structure of the
metal line stripes. There is usually no information on the
localized internal operating temperature of a given line
stripe. Tests utilizing controlled test patterns where the
researcher has a degree of control over the line stripes

would simplify the job of data analysis. Results should be
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easier to interpret do to the elimination of many variables
that are not a factor in the study at hand. The opportunity
for control makes the specialized test vehicle ideal for use
in the lab environment (78:126).

Four test vehicles were available for use. One vehicle
was produced commercially by vendors through the MOS Imple-
mentation Service (MOSIS). A second vehicle mask was pro-
duced at Bell Labs for electromigration experiments by Shela
Vaidya (100:165). The remaining two patterns were produced
in on base laboratories. All four vehicles offer a simple
geometry with a constant stripe cross sectional area. Large
bonding pads allow for the introduction of current to the
linestripe. All four vehicles were produced with no over-

glass layer, unbonded, and unmounted.
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MOSIS Test Vehicle.

Figure

The basic cell consists of

12.

The MOSIS test vehicle is shown in

MASKOWITZ
RHODEN

Figure 12, MOSIS NMOS Test Vehicle

bonding pads, shown in the

block of nine bonding pads

with one of five different

Each pattern is referenced

- AP LI AL I WPy

- e e

two separate blocks of nine
upper half of Figure 12. Each
are interconnected to each other
metal or polysilicon patterns.

with respect to the letters on
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“re tonding pads for each test stripe, as shown in Figure 13.

Figure 13, MOSIS Pattern Designations

R
PR
a'a’a .

”3ing 1.2 micron NMOS technology, the thinnest stripe width

.
-

-

{3 2.5 microns with a height of 1 micron. The pad size fn;

..
LN

aliows thick bonding wires or ribbon bonding interface with ‘—“’
the test pattern without electromigration occurring outside
:f tne test pattern itself. Fabrication information f?ﬁ{

|
grcvided by MOSIS is as follows: T

Metal Line Composition - 99% Aluminum, 1% Silicon
Metnod of Deposition - D.C. Sputtered

Temperature - Ambient
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E o
t Vacuum - 1x10-0 torr 23_;1"':3.-_-
, Annealed (Alloyed) 5ffj
Temperature - U450°C :

Time - 30 Minutes

- aih

Environment - NsHp . ‘

.i The metal stripes were deposited by evaporation onto the
first metal layer, with no glass overlay. Four versions of ' }
the vehicle are available. Besides the basic cell, the same

patterns are available with glass overlaid (the bottom half

of Figure 12). A more complex version contains the test
patterns in second metal, plus three different polysilicon

stripes for future testing. The last version is the basic

@ cell with the inclusion of a planar diode underneath the

test pattern as shown in Figure 14,
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Figure 14. Complex Test Vehicle With Diodes

These diodes will be used for future test temperature

measurements.
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Comprehensive Test Vehicle. The Comprehensive Test Vehicle,

w2TV), 1is produced by the Avionics Lab, WPAFB in support of
their ongoing Gallium Arsenide research (15:27). The test

pattern of primary interest is TP23, located in test area

A2, 38 shown in Figure 15.

Figure 15, CTV TP23 Pattern
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The CTV test vehicle was modified during manufacture by

—
using only the #5 gate mask to produce flat stripes instead "
of the original stripes that cross step grades. The line EEQ
widtn is 0.8 microas with a height that can be controlled N
during the aluminum evaporation deposition as desired. The L
pattern length is 4000 microns long with tap points at the .
1000 and 2000 micron points (15:117). Other useful patterns N

] for preliminary work include TP29 and TP30, both located in e

- area A3, Shown in Figure 16, TP29 and TP30 possess a line N

L[ width of 12.4 um with a length of 797.8um. '

lo. .

L. L.

= Sl

» ) '-:j‘-:

b . i

-

b .

p -

g g

Figure 16, Patterns of Interest on CTV

I-1-8% e

e et N N T

e, R .
e

T T T I O S T RN Les AR R
e N 8 PR I B 0l BT Yol S S YR AT U T 0N R PO VPPN Ph P g, BRI P, PN )

T T e
-y




Al M Al bt v B g N AN W L abh R A A Sadcind & 0" Gudf Aty .. r\r_:r\vr\- P IL NN 2t S et atgund st RIS A SERNRCUS oA e o A M i A

Metal that is deposited on the wafer by evaporation is

patterned by a positive lift-off technique. The finished

product can be left unmounted and unbonded. All test Eigﬁ
vehicles are made of aluminum deposited on a silicon sub- ;&gz
strate Wwhich is insulated with a thermally grown 2000-3000 v -
angstrom layer of silicon dioxide. :
AFIT Test Vehicle., The AFIT test vehicle was designed at

the Institute. The circuit is built from a double photo- i
lithography process in which two mask steps are used. The l
photolithography process utilizes two separate masks. The ;
first mask is the bonding pad mask. The bonding pads are T

evaporated onto a Boron doped Silicon wafer which is covered
with 2000 angstroms of Silicon dioxide for insulation.

° After etching, a second photolithography step with a
separate pattern mask is used. The second line pattern is
evaporated onto the wafer with line ends in contact with the
bonding pads. After a second etching, the result is the

test vehicle shown in Figure 17 which can be manufactured in

large quantities.
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a) Magnification 60x b) Magnification 300x

Figure 17. AFIT Test Vehicle

The line width is 8 microns wide with a typical height of
r 2000 angstroms. The pattern length is 800 microns long.
t Although this structure provides the most flexibility, the Ay
@ .. A
! process also takes a long time and the yield of usable ’
A K
. patterns per wafer i3 low. For initial testing and experi-
. S
1 mental setup, this pattern represents the most expendable S
4 ' q
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- Bell Labs Test Vehicle. The Bell Labs test vehicle was

constructed at the institute, using a pattern mask acquired
from Bell Labs in Murray Hill, New Jersey. This pattern was
utilized during previous research by Shela Vaidya in 1970

(100:165). Figure 18 shows the four patterns that comprise

the pattern.

Figure 18. Bell Labs Test Pattern
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Each linestripe measures 4000 angstroms long with a widths
of 3.58, 5.7, 6.75, and 9.24 microns. The thickness of the
stripe is controlled during fabrication. An interdigital
comb structure separates the linestripes from each other.
This structure is connected to a contact pad and can be used
to detect a stripe failure caused by a shortcircuiting of
the linestripe pattern with the comb structure.

Aluminum was evaporated on the surface of a Boron doped
wafer that had 3800 angstroms of wet grown Si0, on the
surface. The pattern was formed through a single photo-
lithography process. The excess metal was then etched away,
leaving only the test patterns. The patterns were annealed
at 500°C for 10 minutes to adhere the aluminum to the sub-
strate,. Two thicknesses of aluminum were deposited, 1900
angstroms and 6000 angstroms.

Bridge Test Vehicle. The Bridge Test Vehicle (BTV) is an

of fshoot of the Bell Labs pattern previously described. The
1900 angstrom thick patterns were further processed to pro-
duce the bridge pattern. The test pattern is pressed into

melted wax on the surface of a sapphire disk. Wax is melted

around the edges of the pattern to seal the pattern, leaving
holes on the back side of the test vehicle exposed. With
the test vehicle sealed in wax, the disk is immersed in an

etchant solution. The etching is periodically checked for

progress, When the etchant has eaten through the substrate,
the stripe pattern is initially protected from the etchant

by the oxide layer between the test pattern and the sub-
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strate. The test vehicl=2 is then removed from the acid,
rinsed and 3ried. The oxide layer may remain or be remov=ad
by a second etchant bath. Figure 19 depicts the stripes
over the etched hole from the test vehicle side and also a
view from the back of the test pattern visible through holes

in the substrate layer.

)
1“%[[

|

|

1, Pattern 3Side of BTV, 100X b) Ztched Side of BTV, 200X

Figure 19. Bridge Test Vehicle
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These hol:s allow for the passage of an electron beanm

through the suspended linestripe, enabling detailed struc-
tural TEM observation of the sample. Detailed Fabrication
procedures for the BTV are presented in Appendix A.

The AFIT test vehicle and the CTV patterns were
utilized primarily in the early stages of experimental
setup. Many patterns were stressed to exercise and prove
the electromigration test circuit design, which includes the
timer and the isolation circuitry required for non-inter-
ference with the set current density. The MOSIS and Bell
Labs test vehicles were reserved for actual experimental

setup runs on both the SEM and TEM., The Bridge Test Vehicle

was used primarily for the in situ observation of electromi-
gration in the TEM. Both microscopes required modification

to accept a power-on linestripe at test conditions.

III-2, Sem Coldstage Design

The unique capacity to observe electromigration in a SEM
while controlling the operating temperature requires modifi-
cation to the SEM specimen chamber. To accomplish this, a
cold stage cépéble of maintaining a powered circuit at a

temperature of 93K was designed. The core of the design

involves the mounting of a test vehicle on the cold stage of
a prototype MMR microminiature refrigerator, (see Appendix
B). The refrigerator was modified to allow for the intro-
duction of power to a device located on the cold stage. The

high vacuum requirements for operation of the SEM and the
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refrigerator led to the design of an interface flange which
allowed for electrical and thermal access to the test vehicle,
The cold stage was designed, constructed, and then inserted
into the SEM, where a vacuum of better than 5x10'6 torr must be
maintained (64:64). Figure 20 shows the block diagram of the

equipment.

NITROGEN

SEM

TEMP

COLD | STAGE

CONTROL

ey  CURRENT
SOURCE

TIMER

Figure 20. SEM Modification Block Diagram

Prototype Refrigerator. The prototype cold stage is manu-

factured by MMR Technologies Inc.. Four quartz cold stages
were provided by MMR Technologies for testing. The Quartz stage
is a flat plane with a capillary tube system running from the

flange end to specimen end, as shown in Figure 21.
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Figure 21, Cold Stage
Source: (106)
These tubes supply Nitrogen gas which removes heat from the
sample mounted-on the stage. Electrical connections also
run the length of the stage to provide temperature feedback
to the K-=77 controller from the thermocouple mounted under
the specimen on the end of the cold stage. To provide
current for the experiment, extra connections had to be
fabricated.
-~
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Wiring to the Alumina bonding block on the cold stage

is depicted in Figure 22,

TEST VEHICLE END

ALUMINA BLOCK

Figure 22. Input Current Wiring

Silver Paint (SPI #5001), was used to secure the test

vehicle to the cold stage just left of the bonding block.

The high thermal conductivity of the paint was required to ST
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.:; i\‘_ﬁ keep from thermally insulating the test vehicle from the
B refrigerator. As shown in Figure 23, a square of Alumina mv
.~ ":'.‘:'.,'
::Z- with four gold contact stripes was mounted on the stage :i:"}:
._." .\:‘}:':-
,'::- close to tn~2 test veainl» sr use as a bonding post. '{:'&‘}:
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Electrical connections to the test vehicle can be made with

relative ease, allowing the introduction of current to the

N
test pattern, From the gold stripes, wiring could then be };ﬁ?
AN
run to an outside source. The routing of the electric and Bﬂﬁc
-' L]

gas connections were determined by the orientation of the
cold stage in the SEM specimen chamber.

SEM Modifications. Figure 24 depicts the size of the

SEM specimen chamber.

SCINTILLATOR ELECTRON BEAM OPENING

Figure 24, SEM Chamber with Cold Stage Inside
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Tne scintillator is in the center rear of the chamber, while

cne of 2Wo access ports is visible in the upper right hand
corner. The largest diameter hole 18 for the specimen door.
Tnis hol2 measures 8.9cm in diameter compared to the cold
stage length of 6.35¢cm. To avoid contacting the
scintillator Wwith the cold stage, the stage required
cositioning as shown in Figure 25.
e
e
e
Y
b - '
@

- - ——
o .
Figure 25. Cold Stage Position in SEM

3

®

o B

L
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test vehicle underneath the electron beam opening from the

gun chamber. The opening is located just above the scintil-
lator in Figure 25. This positioning limits the movement of
the cold stage inside the specimen chamber. The flange end
of the stage actually extends into the electrical port
located on the side of the SEM specimen chamber. The i?*3

diameter of this port is the limiting factor in the avail-

able movement of the cold stage. This orientation does
however, provide a convenient port for both electric and gas

connections to enter.

To accommodate the required connections, an interface
flange shown in Figure 26, was constructed and mated to the

SEM port shown in Figure 25, ;Jf
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0
iA This provided room for the cold stage in the port corridor
*
and for the wiring and plumbing to reach from the stage to
o the interface. Flex tubing and wiring allowed for limited
. movement Oof the stage through the range limited by the
N
chamber dimensions, Figure 27 shows the interface flange in
? position mated with the SEM electrical port.
¢
r
d -—
Figure 27. Electrical Port with Cold Stage R
;i An additional flange was constructed and matched to the

interface flange This flange, shown in Figure 28, provides
a3 Separate vacuum chamber which can be pumped down

independent of the SEM.
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This setup allows for leak checking of the system before

it mating the refrigerator and flange assembly to the SEM. The
ajdditional flange also provides a method for introducing a
ccntrolled atmosphere to the cold stage during an
experiment.

To provide for precise movement co- trol, the SEM stage
controls were used. A modified version of the SEM specimen
chamber door was constructed to position the cold stage and
provide precise control of stage movement. A spacer plate
was fabricated for the door to correctly position the cold
stage and allow for stage control. The mount with the door

spacer plate is shown in Figure 29.

- SPACER PLATE COLD STAGE MOUNT

Figure 29. Cold Stage Mount With Door Spacer
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Specimen stage travel had to be limited to preclude cold
stage damage by exceeding the travel limits imposed by the
modifications. The modified stage and cold stage mount
positions the cold stage at the axis of symmetry inside the
electrical port. This position allows full scale transla-
tion in the x and y direction by moving the SEM specimen
stage controls. The port walls limit rotation about z to a
maximum of 5°, Rotation about y is unrestricted by the
modifications and is limited only by the SEM control itself.
Rotation from 0° to 80° is available. The modifications
coupled with the tight space within the chamber requires
careful handling of equipment to avoid damage.

Once assembled, the SEM is pumped down to operating
pressure. The refrigerator is then activated, providing
temperature control of the test vehicle. Current is
applied to the vehicle and monitored by a timing circuit and
ammeter. The timing circuit monitors time to failure by
detecting an open circuit (See Appendix C). Electromigra-
tion can be observed as it progresses toward a failure mode.
With the prope?.equipment setup and procedure, excellent

observations of linestripe damage can be recorded.

II1I-3. Experimental Setup and Procedure for SEM Coldstage

The setup of equipment for use in the SEM experiments
can be accomplished in a matter of hours. Two types of

experiments can be accomplished with the same equipment

configuration by selecting one of two interfaces to the SEM
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specimen chaamber. Numerous steps must be taken prior to the

running of an experiment to insure the outcome of usable
data. Once the experiment is ready to commence, strict
adherence to the experimental procedure is required to pre-

clude personal harm and/or property damage.

Setup. Preliminary work starts with the selection of a

suitable test circuit that has been diced and cleaned. The

circuit should be probed for good continuity and examined in

a SEM for structural anomalies, non-adhesion to the sub-
strate, variable linewidth or thickness, and other irregu-
larities which may affect the outcome of the experiment.
Photographic documentation of the linestripe to be tested
Wwill simplify the job of comparing the before and after
stress states. After documentation, the circuit is mounted
and bonded.

The test vehicle can be mounted directly on the refrig-
erator stage or on a standard 24 pin Dual In-Line Package
(DIP). In either case, the test vehicle is secured with
silver paint. The 24 pin DIP allows for bonding wire con-
tact with a maximum of 24 bonding pads on the test vehicle.

The refrigerator cold stage is limited to a maximum of four

wire bonds due to the limited number of external leads. The

Wwire bonds connect the bonding pads on the circuit to the
gold stripes set on the alumina bonding block on the cold

stage (see Figure 23). A photograph should be taken, de-

picting the wire bonds and their contacts. This will aid in

determining the correct pin numbers for the desired circuit.




-~y
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Once the connections have been established, electrical con-

tinuity of the test pattern should be verified with a
voltage-ohm meter, With the test vehicle documented,
mounted and bonded, the package can be connected to the
power source, the monitoring equipment and to gas, if
required, as follows;
1) Mount the test vehicle package inside the SEM. This
requires a two step process;

a) Feed the DIP package or the refrigerator through the
specimen chamber port and secure the flange.

b) Position the package via the specimen chamber door
so that the mounting post engages the movable holder,
2) Close the chamber door once the package is properly
positioned.
3) Connect the active plugs to the EM connectors on the
rear of the timer box as shown in Figures 55 and 57,
Appendix C. Note the polarity of the wires. For the
ambient test, use the feed-thru leads. For the cold stage,
use the BNC connections.
4) Turn off the EM switch and the VOM switch on the timer.
Turn both potentiometers fully counterclockwise on the timer
rear panel.
5) Confird voltage source settings (+5 v and < +/- 22 v)
with a volt meter,

NOTE
If increased voltage is required to attain the proper

current density, an alternate power supply may be
incorporated as per Figure 70, Appendix C.

II1-28
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6) Connect the timer to the voltage source, See Figure 66

and Figure 68 in Appendix C. The led seven segment displays

should illuminate.

CAUTION

Improper voltage or polarity may damage the timer

circuit or test vehicle.
7) Cold Stage experiment only: Connect the high pressure
gas line to the cold stage vacuum chamber intake port.
Insure that no restrictions are present in the gas line.
Refer to The MMR model 2205 users manual for the connection
procedure (20).
8) Cold Stage Experiment Only: Configure the gas source by
closing thé regulator flow control valve and opening the
cylinder valve until full tank pressure is registered on the

tank gauge.

WARNING

High pressure gas can be harmful if mishandled.

For complete information on the proper operation of

gas regulators, see the Matheson Gas Regulator

Users Manual (63).
9) Adjust the regulator on the gas supply to register a
maximum regulated delivery pressure of 1800 psig.
10) Connect the ammeter to the timer while noting the

polarity. Turn the ammeter on and set it to the proper

scale.
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Procedure. The successful running of an electromigra-
tion.experiment requires the execution of several steps in
the proper sequence. The vacuum environment must be ob-
tained and if necessary, the temperature must be set. All
monitors must be initialized and the current stress must be

applied at the proper time. Proceed as follows;

1) Determine the desired temperature and current density
for the experiment.

2) Evacuate the atmosphere from the SEM specimen chamber.
Follow the procedures outlined in the SEM Users Manual. The
vacuum for operation in the Cwikscan 100 should bve 5x10‘6
torr or better. The MMR refrigerator is not compatible with
vacuum pressures less than 10-6 torr due to limitations
imposed by the high vacuum glues used to construct the
refrigerator body.

3) Cold stage experiment only: Adjust the regulator de-
livery pressure to 500 psig. Open the flow control valve on
the gas regulator to allow 500 psig nitrogen to flow through
the refrigerator for a minimum of 30 seconds. This purges
the system of moisture and contaminants. Close the flow
control valve and adjust the delivery pressure to 1800 psig.
4) Cold stage experiment only: Open the flow control
valve to allow 1800 psig nitrogen to pass through the
refrigerator. Set the desired temperature on the K-77 Temp-
erature Controller. Instructions for operating the K-77 are

found in the K-77 Users Manual (44). Allow the temperature
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to stabilize. (15 to 20 minutes).

5) Turn on the ammeter and set to the proper scale. Turn
on the VOM switch on the timer.

6) Turn on EM switch and within 3 seconds press reset
button. Leds should indicate "9"s and then "O"s.

7) Turn on the EM switch on the timer to apply power to
the test linestripe.

8) Verify timer operation by monitoring the green led for S
change in indication every six seconds. If no change is
noted, turn off the EM switch and reconfirm proper experi-
mental set up.

9) Set desired current stress with current adjustment

potentiometers while reading current on ammeter. Start with

5K ohm potentiometer (full clockwise rotation will result in

o}

approximately 30 milliamps with a 12 volt supply voltage).

NOTE

A smaller resistance with greater accuracy can be
incorporated into the experiment if needed. See
Figure 69, Appendix C.

10) When the 5K ohm potentiometer reaches full clockwise

travel, increaSe current slowly to desired setting with 200

ohm potentiometer.

CAUTION

Increase current in small increments when within
50 milliamps of the desired current and allow the
current to stabilize from the effects of joule
heating on the test stripe resistance. Current

- adjustment is extremely sensitive near the high
end.
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11) Cold Stage experiment only: Insure that the tempera-
ture remains constant and the 250 milliwatt limit is not

exceeded. The refrigerator can continuously dissipate 250

s/,

milliwatts of power and still maintain the set temperature.

See the Model 2105 Users Manual (20).

T

12) Monitor the current setting for at least 10 minutes to

insure stabilization.

E To Remove the Ammeter During a Stress Test:
a) Turn off the VOM switch on the timer rear panel,
v b) Turn off ammeter.
;' e) Disconnect ammeter from VOM sockets on timer rear
- panel.

Note

Failure to accomplish steps a through ¢ in the
proper order may cause transients that can alter
o the correctly displayed time as it appears on the
- leds.

o|

!I To Accomplish a Current Reading During a Stress Tesg:

f; a) Connect ammeter to VOM sockets on the timer rear

;5 panel.

!_ b) Turn -on ammeter and set to appropriate scale.

%i c) Turn on VOM switch on timer rear panel and take

;i current reading.

!' 13) Activate SEM controls and photograph the sample. See

-i the Cwikscan users manual (64),

Ei 14) Turn off EM switch on timer rear panel after circuit

?» -~ - failure or required elapsed time.
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15) Record the experimental vacuum, elapsed time, and if
appropriate, the experimental temperature.
16) If 2 or more test circuits are located on the same test
vehicle, multiple runs can be performed by returning to
Setup Step #3 and executing the applicable steps from that
point.
17) Cold stage experiment only: Close the tank valve and
allow the pressure to bleed out of the regulator. Turn the
adjusting screw fully clockwise. Close the flow control
valve.
18) Cold stage Experiment only: Turn off the K-77 Con-
troller. Allow 10 minutes prior to venting the SEM to allow
the refrigerator to heat up to ambient temperature.
19) Vent the SEM specimen chamber using procedures in the
SEM Users Manual (64).
20) Open the chamber door and disengage the mount from the
control pedestal.
21) Remove the bolts that secure the access port flange to
the specimen chamber wall.
22) Carefully remove the test vehicle while it is attached
to the mountin; post.
23) Dismount the test vehicle and store it in a safe place
for future reference.

The preceding experimental setup and procedure can lead
to the observation of electromigration damage at controlled
temperatures. For in situ crystalline structure observation,

the use of a TEM is required to extract information in detail.
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III-4. MARK II Holder Design

The ability to conduct electromigration studies is
complicated because of the physical make up of the TEM. The
electrical connections to the test vehicle must be routed
from air to the inner vacuum chamber of the microscope where
the test vehicle is located. The vehicle itself must be
secured within the TEM and connected to an external power
source, yet still be able to be inserted, oriented, and
easily removed. Typical samples which are analyzed with the
TEM are circular, 0.0762mm in diameter and thin enough to
allow an electron beam to pass through them (less than 3000
angstroms). These samples are mounted on a stage which is
only 3.937mm high and recessed within the appropriate
holder. The typical electromigration test vehicle, on the
other hand, is an aluminum stripe on a 0.1778mm to 0.762mm
thick Silicon substrate., Silicon, like glass, is extremely
difficult to dice into a circle without the use of an ultra-
sonic dicer, therefore the TEM sample must be square.
Unique, precise engineering and routing must be incorporated
in order to connect this test vehicle in the vacuum chamber
of the TEM toaﬁ.external current supply.

The unique external to internal routing is accomplished

utilizing a Jeol EM-SHH Heating Holder shown in Figure 30.
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Figure 30. Jeol EM-SHH Heating Holder
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The holder is specifically "designed for use in conjunction
with a JEM type electron microscope side entry goniometer
equipped with a Z-control in order to heat the specimen
under examination.™ (29:1). The holder utilizes an electric
furnace and a thermocouple which are connected to an exter-
nal controller and monitor via four wire leads as shown in
Figure 30. For this study, the holder represents an oppor-
tunity to design a new functionality for an already existent
TEM interface., The ability to heat ¢he sample is not re-
quired and the use of the thermocouple would only indicate
the temperature of the cold furnace which will be a heat
sink for any joule heating present on the substrate of the
test vehicle resulting in inaccurate readings of test stripe
Jjoule heating. These wire leads, were utilized to provide a
new and different solution to the problem of routing current
to the test vehicle in situ. The four leads provide the
ability to connect three different test stripes on one test
vehicle. This allows up to three separate electromigration
runs/observations in situ without removing ihe test vehicle
from the TEM, thus minimizing circuit time outside of a
vacuum environ;ent. These wire leads were disconnected from
the furnace and its thermocouple at the brass connection

block depicted in Figure 31.
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New wire leads were soldered to the four wires at the brass
connection block and routed up under the redesigned stage to
an Alumina bonding block shown in Figure 23, which is
mounted on the stage with silver paint. The wires were then
soldered to the four gold stripes on the Alumina. These
gold stripes serve as bonding posts for the test vehicle.
The furnace element was replaced with the newly designed
stage shown in Figure 32 in order to recess the bonding

block and routing wires.
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SECTION A-A

ALL DIMENSIONS ARE 1L \CHES
MATERIAL STAIN. STEEL

Figure 32. MARK II Holder Stage
Source: (4)
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The redesigned stage was necessary due to the possible
interference of the stage with the miniature door and
rollers within the entry goniometer on the TEM. These
rollers ride along the top and bottom surfaces of the holder
as it is being inserted and removed from the goniometer.
This new and different design also permits the square sili-
con test vehicle to be mounted on the same level with the
bonding block thus facilitating bonding procedures. The

prototype holder is depicted in Figure 33.
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The test vehicle is mounted in place with silver paint and
then wire bonding connections are made between it and the
Alumina bonding block using one mil Aluminum bonding wire.
The external connector of the heating holder was replaced
with color coded banana plugs to allow quick connection to
the timer controller. The controller supplies current from
a constant current source and is monitored by an ammeter.
While current is flowing, the running time is kept by a
timer circuit, which measures time by the minute (see
Appendix C). When an open circuit occurs, the timer marks
the elapsed time which can then be used for statistical
calculations. Electromigration runs can also be accomp-
lished outside the TEM in a specially designed transport and
holding box which can contain the MARK II holder as shown in

Figure 34.
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Figure 34, Transport and Holding Box

The box contains two vent valves which allow the environment
within the box to be either a vacuum or Nitrogen. Feed

through electrical connections provide the necessary current
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for electromigration runs while maintaining the test vehicle

and holder in a cleaner environment then ambient air. The

o vacuum box is also used to store the holder while the test
- vehicle is mounted on it to reduce contamination between in
situ electromigration runs.

Conducting electromigration in situ provides an excel-
lent opportunity to monitor the process through its various
stages and analyzing crystalline structures without inter-
rupting the process and reduces the possibility of outside
contamination. The non-destructive redesign of the EM-SSH
heating holder into the MARK II Holder facilitates this
opportunity while still permitting the holder to be returned

to its original configuration at a later date.

I1I-5. Experimental Setup and Procedure for TEM MARK II

The experimental setup and procedure of the TEM experi-
ment is dependent on two factors; 1) Which test vehicle is
being used and 2) whether the experiment is being conducted
in situ or within the holding vacuum box described in sec-
tion III-4.

Test vehiole selection dictates how the sample will be
mounted on the holder and what bonding connections will Dbe

made to the vehicle. The test vehicles described in section

III-1 vary in thickness from the 0.2286mm AFIT Test vehicle
to the 0.5207mm thick MOSIS Test Vehicle. Silicon spacers,
3.3528mm square and of various thicknesses are silver

- painted to the underside of the thinner test vehicles to

III-44

et - e e T R S I UL TN
A e e T e LTt et

A )‘-"‘."'.“.' ER AT T UL S N DI e A A e T e e T T e e e e e e e e e e e
LS DS I VPR TR RIS S e T A I I P AL P OISR S I



. R I I R A AT Y PR S S R S I U S
‘.‘.“-‘--__u.___.--wn‘d‘-.’---.n...__--.k-ﬁ_-gn--_.A

attain, the same height on the holder as the bonding block
depicted in Figure 23 thus facilitating wire bonding on the
nolder. Spacers for the Bridge Test Vehicle also have a
nole lasered in the center which will allow the electron
seam of the TEM to pass through. This setup requires the
test vehicle and spacer holes be aligned and centered over
the holders orifice.

Test vehicle alignment must also be considered when
dicing the wafer containing the test vehicles. The die for
the holder can be 3.3528mm square, however, the test vehicle
must also be centered lengthwise as the side focussing of
the TEM on the holder i3 limited to the area between the two
outer edges of the innermost two gold stripes on the bonding

block as shown is Figure 35.

WORKING AREA

Figure 35. TEM Field of View on MARK II Holder
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R This restriction must be considered during test
vehicle wafer dicing and wire bonding. Wire bonding is

accomplished via the four gold stripes on the alumina

bonding block. External holder connections are made with ?;,_;
the four colored banana plugs which relate to the bonding ‘#L4¥
block stripes as shown in Figure 36. ﬁ:?iﬁ
IOEND
T AT ] if?
(L
GRAY
OIS
TEST VEHICLE VIOLET
)18
GREEN
o
‘s 777777
ORANGE
L Ll

Figure 36. Banana Plug/Bonding Block Relationship

The banéna-plug connections are determined by the ex-
perimental run being conducted. If the holder is being used
in the TEM to take pre-run or static (no current applied to
the test vehicle) photographs, all four plugs are connected
to case ground via a wire harness to minimize test vehicle

charging.
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When photographing during current stressing (dynamic)
only the unused plugs are connected to the grounding wire
harness.

During test sample stressing, the active plugs are
connected either directly to the timer for in situ
stressing, or to the connections, within the holding vacuum
box which are in turn connected to the timer for external
test vehicle runs.

Experimental Setup. As noted, the type of stress run

being considered as well as the test vehicle in question has
a direct effect of the experimental setup and procedure.

1) Set dicing saw for a 3.3528mm square die and align the
test vehicle so that its thinnest dimension is centered.

Set the longest dimension so the bonding pads to be utilized
are as close to one edge as possible. This will facilitate

later bonding.

NOTE
These alignment considerations may not be possible
with the bridge test vehicle as hole centering has
priority.
2) Dice test vehicle and clean in 2 minute, 80°C, ultra-

sonic baths of Trichloroethylene (TCE), Acetone, and finally

Methyl Alcohol. Rinse in Freon.

WARNING
TCE is a known carcinogen in laboratory animals.

Acetone can cause damage to the liver. Use these
chemicals only under a ventilation hood.
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CAUTION
Do not use ultrasonics with Bridge Test Vehicle as
bridge integrity may be compromised.
3) Should spacers be required, clean as described above
and mount to holder with silver paint., Allow to dry.
4) Probe test vehicle to confirm continuity.
5) Coat underside of test vehicle with silver paint and
position test vehicle on holder stage ensuring that areas to
be monitored remain within the outer edges of the inner most
connection stripes as depicted in Figure 35. Butt test
vehicle up against bonding block or center up hole of Bridge
Test Vehicle. Allow to dry.
6) Accomplish bonding of test vehicle to bonding block and
note connections made (recommend a microscope photograph).
7) Apply silver paint to perimeter surfaces of test
vehicle and to vertical holder walls to reduce charging
effects. Allow to dry.
8) Accomplish pre-stress "before™ photograph mapping with
all banana plugs case grounded using a wire harness which is
connected to a TEM case ground.
9) Measure-téét vehicle stripe resistance across active
plugs with an ohm meter,
10) Connect MARK II Holder to Timer.
a) For in situ vehicle stress:
1) Connect active plugs to EM connectors on rear

of timer as shown in Figure 68, Appendix C, noting polarity

(red is positive, yellow is ground). Inactive plugs remain
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connected to case ground wire harness.
b) For ambient vehicle stressing;

1) Connect active plugs to red (positive) and
black (ground) connectors in vacuum box.

2) Connect vacuum box connector plug to EM
connections on rear of timer noting polarity (ground tab
side of plug to yellow)

3) Replace cover and tighten the wing nuts.

4) Either evacuate with vacuum supply valve open

and purge valve closed, or apply, N, under positive pressure

with both valves open.

11) Turn EM and VOM switches off (down) and both current
setting potentiometers full counterclockwise on timer rear
panel.

12) Confirm voltage source settings (+5 volts and £ +/- 22
volts) with a volt meter and connect to timer as appro-
priate. Refer to Figure 66 and Figure 68, Appendix C. Led

seven segment displays should illuminate.

CAUTION

Improper voltage or wrong polarity may damage
timer circuit and/or test vehicle.

NOTE

Should current density dictate a higher voltage
source then 22 volts, see Figure 70, Appendix C for
alternate system hook up. Addition power supply
will be required.

13) Connect Ammeter to timer noting polarity. Turn on and
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set ammeter to proper scale,

Experimental Procedure. The following experimental

procedure should be used.
1) Determine required current from target current density.
2) Record ambient temperature and vacuum (if utilized)
surrounding test vehicle.
3) With system set up as described in Experimental Setup,
turn on VOM switch, Ensuring ammeter is turned on and set on
appropriate scale.
y) Turn on EM switch and within 3 seconds press reset
button. Leds should indicate "9"s and then "0"s.
5) Verify timer operation by monitoring the green led for
change in indication every six seconds. If no change is

Gf. noted, turn off the EM switch and reconfirm proper experi-
mental set up.
6) Set required stress current with current adjustment
potentiometers while reading current on ammeter. Start with

5K ohm potentiometer (full clockwise rotation will result in

approximately 30ma with a 12 volt input).

T) Increase current slowly to desired setting with 200 ohm

potentiometer Hﬁen 5k ohm potentiometer reaches full
clockwise travel.
o CAUTION

Current adjustment is extremely sensitive near
high end. 1Increase current in small increments
when within 50 milliamps of desired current and
allow current to stabilize from the effects of

-~ Joule heating on the test stripe resistance.
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8) Monitor current setting for at least 10 minutes to

insure stabilization.

To Remove Ammeter During Stress Run;
a) Turn off VOM switch on timer rear panel.
b) Turn off Ammeter
¢) Disconnect ammeter from VOM sockets on timer rear

panel.

Note

Failure to accomplish steps a through ¢ in the

proper order may cause transients that can alter

the correctly displayed time as it appears on the

leds.

To Accomplish Current Reading During Stress Run;
ﬁ#‘ a) Connect ammeter to VOM sockets on timer rear panel.

b) Turn on ammeter and set to appropriate scale.

¢c) Turn on VOM switch on timer rear panel and take

current reading.

To Interrupt/Terminate Run For Test Vehicle Photographing;
h;' a) Accomplish current reading as described above.

3 -

r~ b) Turn off EM switch.

c) Record elapsed time in the event of power interrup-

tion during.disconnection/reconnection.
d) Set up holder in TEM.
1) During in situ stress run, remove active plugs
and connect them to case ground wire harness along with

inactive plugs.
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2) During stress runs in vacuum holding box
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A) Close vacuum/Nitrogen supply line.

*
.

.4

" ¥

B) Open purge value if holder is under vacuum. ~

'y

'vr"\' N
8, %
Pt

C) Remove wing nuts and cover.
D) Disconnect active banana plugs and remove

holder.

E) Insert holder into TEM goniometer.
F) Connect all banana plugs to case ground ESAt
wire harness.

e) Photograph Test Vehicle

To Resume Stress Run s
a) Set up holder
1) During in situ stresp runs. Disconnect active plugs
F— and reconnect to EM sockets on rear of timer observing

proper polarity.

2) During stress runs in vacuum holding box.

A) Disconnect all banana plugs from case ground

wire harness.

B) Remove holder from TEM goniometer and place on

plexiglass stand in vacuum holding box. . L
C) Reconnect active banana plugs to connections
on vacuum box and timer observing proper polarity.
D) Replace box cover and secure with wing nuts.
E) Set purge valve;
1) Open for Nitrogen.

2) Closed for vacuum.
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F) Open vacuum/Nitrogen supply valve.

G) Ensure ammeter is on and set to proper

scale.

.

e, o

L

LA

H) Ensure VOM switch is on.
I} Turn on EM switch and confirm operation by
monitoring 6 second cycle of green Led.

J) Adjust current as necessary.

Adherence to the above procedures should result in the AR
acquisition of data relating to the dynamic morphology of a

% linestripe under current and temperature stress.
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Iv. Results and Discussion

This thesis research resulted in the successful design, Aty
fabrication, and testing of apparatus and associated test

vehicles which permit viable research and observation of

electromigration in both the SEM and TEM. The microminia-
ture refrigerator system incorporated into the SEM allows
electromigration testing to be accomplished in situ while

isolating a critical variable in Electromigration studies,

the temperature. The modification of the Jeol heating
holder and the design and testing of a test sample void of g,,;’
an interfering substrate yields excellent data and observa- R
tion of electromigration and the study of its crystallo- iﬁ'ij

graphic composition through diffraction pattern analysis.

IV=-1. SEM Technique

SEM. The SEM provided a clean vacuum for the conduct of
the cold stage experiments. The vacuum was maintained at
2x10=6 torr with the vacuum.chamber that houses the refrig-
erator in place. No adverse effects were noted by the inte-
gration of the-fefrigerator cold stage with the SEM specimen

chamber.

The absence of adverse effects on the SEM vacuum en-
vironment is significant. Experimental high vacuum glues
were employed in the laminar construction of the refrigera-
tor. The glues withstood the high pressure inside of the

refrigerator and maintained the seal. No leaks were noted
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in the SEM specimen chamber., This result paves the way for
further research on new sealants that will work at even
lower pressures.

The gun electronics of the SEM showed its age as per-
formance was marginal at best. High voltage and alignment
problems kept the electron gun down throughout most of the
research. For a short period of time, the gun was rendered
operational, which allowed for the photograph of the test
vehicle on the cold stage under powered conditions., Figure
37 shows the SEM micrograph of an NMOS test vehicle mounted

on the cold stage, with power applied to a test pattern.

Figure 37. SEM Micrograph of In Situ Electromigration
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The experimental conditions were:
Vacuum - 2x10-% torr
Temperature - 223 K
Pattern - NMOS Test Vehicle, E-F Pattern

Current Density - 3.5x1064/cm?

N The SEM settings were:

il Emission Current - 10 microamps
P Accelerating Voltage - 20kv

; Magnification - 60x

.

The resolution is very poor, even at this low magnification.
Resolution dropped off rapidly as magnification was in-
creased. The only picture attainable was obtained at the

above SEM settings. The sample was not centered, even with

.':'\!
]
.
- q

full control movement of the sample stage controls. This

led to a modification of the original sample mount described

in chapter III, which will be described later. Although the
micrograph is of poor quality, it is sufficient to demon-
strate the technique of in situ viewing of electromigration
on a cold st;ge. Better micrographs would be possible with
a better SEM. -

As previously mentioned, the original sample mount was
modified to better position the cold stage directly under
the electron beam. The modified sample mount is shown in

Figure 38.
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Figure 39. Quartz Refrigerator Stage

The first refrigerator experienced a failure upon initial
application of Nitrogen gas pressure. The refrigerator was
being leak tested with a leak detector vacuum systen.

Pressure increased from 5x10-3 torr to roughly 500 psi in

less than 2 seconds, causing rupture of the cold stage and

the popping out of the refrigerator cap on the end of the
interface flange. Subsequent investigation of the cold
stage revealed a crack in the quartz, which caused a
pressure leak and eventual damage to the refrigerator.

The second refrigerator was broken during insertion into
the SEM. The chamber door travel 1s severely limited with

the refrigerator mount in place on the SEM specimen stage.
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Figure 38. Sample Mount

Prototype Refrigerator. Three prototype refrigerators were

used in the testing phase. The quartz refrigerator stage is

shown in Figure 39.
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During rough out of the specimen chamber, vibrations from
the roughing pump caused the specimen door to drop open.
The test current input wires which curl from the Alumina
bonding block underneath the cold stage and back toward the
BNC connections, limited the travel of the refrigerator.
The wires were stretched taut, which put a sufficient
bending moment on the cold stage to break it in half, This
led to a reroute of the input wires as shown in Figure 40,

to preclude unnecessary torque on the cold stage.

Figure 40. Modified Wiring on Cold Stage
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Additionally, two steel set screws were added through the
- floor of the refrigerator suppcrt bracket near the cold
stage end. These s8screws are extended to contact the refrig-
erator during experiment preparation. They provide support
for the stage to minimize the chance of accidental damage to
the refrigerator. During an experimental run, the set
screws must be retracted toavoid a heat leak from the
support bracket to the cold stage. The extended set screws

are shown in Figure 41,

h -
e .U’.-',‘Uﬁ
Figure 41, Refrigerator Support Set Screws
Iv-7 -

S e . . LI PSR T I . o P . . e et e

PO Lo . . o et e e e e e e e e e e et . R BN

ST T L I T B P T I I L S I s St ate B R R L
E Y P R S RS A e A e LT e Xy

oM T : PR N T L I e P e R A At LN . . P Vet
tatalaalaloela a '_A‘-’A“I—-,-‘_A*_-’_“-._"A'_A.!_.._.'—.\AL.-A--,.'AA._-LA’A ¥ . . C v A < < - ol




A S i Tl M) 4T A e b e i

ML G it i ek el e e~ e e ek e bt ]

In addition to the rerouting of the input current
wires, Figure 41 shows a relocation of the bonding block.
Heat leaks to the cold stage (at a temperature of 76 K), at

a rate of approximately 10mW/ohm for 1 mil Aluminum wires in

contact with the cold stage (106). Placing the bonding

.
(YA
)I

[

A

block on the cold stage with four 10 mil diameter wires in

Is
LR

T,
%,
SN

PR i

oy

contact caused a large heat leak which affected the power
handling capacity of the refrigerator. In contrast to
Figure 21, the original 1id for the refrigerator support
bracket was reinstalled. The bonding block was secured to
the 1id. From there, 1 mil bonding wire contacted the
sample on the stage. The smaller wires, with a higher
thermal resistance, reduced the heat leak through them to
(:‘ the cold stage.
The resistance of a linestripe can be computed using

the equation

r = pl/a (9)

where p, the resistivity, is a function of temperature

- (104:F93). By computing the resistance of the test stripe, i
the power dissi#ated across the stripe can be computed.
Assuming a maximum power of 250 milliwatts, maximum current
and maximum current density can be computed. For example,
the MOSIS E-F pattern has a length 265 microns, and a cross
sectional area of 3):10'6 micr~ns, The resistivity at 300 K
is 2.5x10-Sonms-cm. This yields, through equation 9, a

resistance of 2.2 ohms. Power is related to resistance by

S
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With a maximum power

the square of the current (P = IZ2R),

of 250 mW, a maximum current is estabi.ished at 337.1 ma,
which leads to a maximum current density of 1.1x107A/cm?2.
This 1limit plotted for the operating range of the cold stage

while using NMOS patterns E-F and F-I/F-C is shown in Figure 42,

—

®—@ £-F CURRENT

------- B F-1/c-F CURRENT

$EE
,
]

CURRENT ma
g

1 1
73 123 173 223

TEMPERATURE K

Figure 42. Operating Envelope at Maximum Power

Thermally, the refrigerator performed well. The minimum
attainable temperature was a function of the individual
refrigerator with the lowest observation being 86 K., The

vacuum remained at 2x10-6 torr at all temperatures for the
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cold stage. On one test at 5x10-5 torr, the vacuum de- :;ui

e
creased noticeably as the cold stage cooled down to below fﬁlﬂ
100 K. The stage acted as a cold finger within the vacuum EE§;5
chamber. Our experiments show that A vacuum in the lower $f£g

10-6 range will minimize this effect.
A temperature instability was noted for temperatures

below 223 K. The temperature deviated by as much as 10°

warmer than set. At 1800 psi gas pressure, the flow rate is suaEe

.. 4

{ about 4 cubic feet per hour. The expansion reservoir under : z;
:  the specimen stage fills up with l1iquid nitrogen and over- ??
S flows (106). This appears to have an effect on the tempera- :‘““;
ture stability of the cold stage due to possible clogging of TE:?é

the heat exchanger return lines, By reducing the pressure jf

to 1200-1500 psi, the flow rate reduces, thus preventing the :;

reservoir from overflowing. The published temperature sta- -T-?:

bility is then maintained and the visible effects of
clogging (near zero flow rate and unstable temperatures),
are eliminated. However, if the test sample is subject to
changes in resistance over time, care must be exercised in
the setting of the gas flowrate, As the stripe resistance
increases, so ébes the heat energy that is generated. If
the power generated exceeds the refrigerator capacity at
some reduced flowrate, the temperature will rise unless the

flowrate is increased to compensate for the additional power

being generated. Most of the experimental runs were cooled

using 1800 psig and then the runs were accomplished at 1200

psig.
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The effects of exceeding the maximum power dissipating
capacity of the refrigerator were readily apparent. With a
test stripe under stress, it is reasonable to assume that
joule heating will raise the temperature of the stripe.

This energy is dissipated by the refrigerator cold stage.
The cold stage diode will sense the temperature and maintain
the preset value. By reducing the flowrate to just below

the minimum required to maintain thermal equilibrium, the

Joule heating will exceed the refrigerator heat sink
capacity. In this condition, thermal equilibrium is not i{fi
maintained and the stripe temperature will rise. This '

temperature rise is sensed by the cold stage diode and is ;5€ﬁ

reflected by the K-77 controller., As soon as the flowrate

is increased, the stripe temperature is rapidly reduced to
the preselected value. As long as the power maximums are
not exceeded by the stressed pattern, one can assume that
the stripe temperature is that of the cold stage.

During an early experimental run, an electrical problem
surfaced in the wiring section of the cold stage holder.
The back side of the BNC connectors are not insulated,
providing an o;portunity for the steel gas supply tubes to
contact the connectors. The proper test current could not
be attained because the current was grounded into the SEM.
The problem was eliminated by sheathing the gas supply tubes
with a thin teflon tube. This prevented further short

circuits from occurring.
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Nitrogen Gas Supply. The Nitrogen gas supply provided

g

1800 psig gas to the refrigerator fcr cooling. No special

by
handling was required for the 6000 psig tank. The regulator ::§
was easy to handle, making precise pressure control effort- FES
less. A tank containing 494 cubic feet of gas will sustain ifﬁ
50 to 110 hours of operation, depending on both the opera- fi
ting temperature and the gas flow rate used. Ei
Constant Current Density Failure Data. The study of -
electromigration as a function of temperature while holding -
the current density constant has been accomplished before at ﬁ
densities greater than 106A/cm2 and at temperatures lower i;,
than 373 K (12). This data can be reduced to yield ,
Arrhenius plots, showing a time to failure vs temperature -él
(65-67; 73). Results of the constant current density ex- ;:;
periments are shown in Table I. Eg}
L
R
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e Table I.

' Constant Current Density vs Temperature '
: F
- :‘{::‘”(‘(
: %
X CURRENT DENSITY 4,0E+6 A/sqem s
'\ ‘
. TEST TEMPERATURE TIME f
. -;'5".::-.
. 1 98 K 600 minutes (stopped) BN
: 2 127 K 600 minutes (stopped) S
- I 172 K 600 minutes (stopped) L
2 4 223 K 400 minutes (stopped) PN
l 5 248 K 600 minutes (stopped)

) 273 K 600 minutes (stopped)

7 298 K 600 minutes (stopped)

8 F2T K 113 minutes (failure)

9 I48 K 34 minutes (failure) .
) .

The pattern used was the NMOS F-I and C~F pattern with a

i o

thickness of 12000 angstroms with an average width of 2,5 Rfﬁ.
microns (see Figure 13). Current density was set at .
4x1064/cm2, Temperature ranged from 98 K to 348 K, which
remains within the operating limits of the refrigerator. In
the interest of time, the test was terminated if failure was
not observed by 10 hours, Failure is defined as an open
circuit detectable by zero input current. The extent of
electromigration damage as a function of temperature is
illustrated in Figure 43, where before and after pictures

are provided for various temperatures. ]
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e) Before £f) 600 min at 248 K
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g) Before h) 600 min at 123 K

. Figure 43 (continued). Constant Current Density
(4x1064/cm2) vs Temperature
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Through the diffusion coefficient equation,

D = D, exp(-Q/kT) (10)

the Einstein relationship shows a decrease in mobility as

temperature decreases as shown in equation 11 (62:324).
u = e2%[DO exp(~-Q/kT)]/kT (11)

The mobility of the species has a direct effect on the
atomic flux. The atomic flux will decrease with decreasing
mobility, and thus, decreasing temperature, as shown in

equation 4 (26:1410).

J, = uF (12)

Stress increases as a function of temperature, causing a
stripe to sustain more extensive damage with higher
temperature.

Constant Temperature Failure Data. In order to examine

the effects of increasing current density at a constant
temperature, experiments were run as recommended by Braun
(12). An increase in current density allows for experiments
to be run at cryogenic temperatures without having to wait
an excessive time to see results. Constant temperature

failure data is presented in Table II.
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Table II,

Constant Temperature vs Current Density

TEMPERATURE 223K
TEST DENSITY TINE

1 4.5E+06 A/sqce 500 minutes ({stopped)
2 5.0E+0b A/sqce 326 minutes (failure)
3 5.5E+0b A/sqce 103 pinutes (failure)
4 b5.0E+0b A/sqca 13 minutes (failure)

The pattern used is the MOSIS NMOS stripe E-F with a thick-
ness of 1 micron a width of 2.5 microns., Current density
ranged from 4,5x1004/cm2 to 6x106A/cm2. Temperature was
maintained at a constant 223 K. As in the constant current
density tests, run time was limited to a maximum of 10 hours
with failure defined by open circuit detected by zero input
current. Figure 44 shows before and after SEM micrographs
of test patterns that experienced various current stress at

constant temperature.
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Figure 44 illustrates the effect of increasing the current
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density at constant temperature. Flectromigration damage is

observable and evident at high current densities and 1low

e
s 0 _L_A
e
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temperatures as predicted by D'Heurle (26:1412). Equation 4
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can be rewritten as

B

R 3
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]
Sy

J, = (ND/kT)Z"epJ (13) o

where N is the concentration of ions, D is the diffusion
coefficient, 2%e is the effective charge of the ion, p is
the resistivity of the conductor and J is the current
density (12:485). Equation 2 predicts that the magnitude of
the atomic flux will increase with increasing current den-
sity, assuming that all other variables are held constant.

. As seen in chapter 11, a non-zero atomic flux divergence is
required to sustain electromigration damage,.

Additional Data Points. Initial experimental runs

vielded data points at various points listed in Table III.

Table III.
—t
Additional Dzta Foints
TEST  CIRCULT  TEMRERATURE DENSTTY TiMe 3,r7,£
t £ 1750 3.5Ee0e Arsge 156 minutes istopred) o
Z F-1 98 ¥ £.0E«0c A/soze 600 minutes (stopped? Sertae
M £E-F STk 8.05e08 Afsqze T einutes (failure) o
- {
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Some early runs produced interesting resulls. One test run
at 135 K shows little or no electromigration damage after 26
nours at a current density of 3x106A/cm2. Figure 45 shows

the before and after condition of the test stripe.

a) Before b) 1560 min at 3x100A/cm®

Figure 45. Test Stripe at 135 K

Another run at an even lower temperature, 100 K, produced ~—

different results. Under a stress of 8x106a/cm2, this ecir- ﬁy
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N cuit lasted only three minutes. Electromigration damage is

seen to occur at cryogenic temperatures, as depicted in

v ow oo,
M - HODENNER

Figure U6, provided the current density is high enough.
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]
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a) Before b) 3 min at 8x1064a/cm? e

Figure 46. Test Stripe at 100 K

Gradient T and Structure., Equation 5 presented the

derivative of the atomic concentration at any point as the

gradient of the atomic flux, rewritten here (18:8).
Iv-22
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de/dt = -del-(Ja) (14)

Assuming that Jz i1s a function of both composition and

temperature, then the one dimension case can be written as

dex/dt = -{(dJa/ds)(ds/dx) + (dJa/dt)(dt/dx)} (15)

which is equation 5 rewritten (18:8). Equation 7 shows
that for a non zero flux divergence to exist, either a ieea- d
structural irregularity or a temperature gradient must

exist., Huntington and others observed that for properly

heat sunk stripes, voids and hillocks formed at random,
their position being determined by structural changes, such
as grain boundaries (U43:276; 33:52). The lack of a tempera-
T;- ture gradient from pad to pad drives the (dJdasdt)(dt/dx) :._*
term of equation 7 to zero, leaving the structural term. =

The randomness of the void and hillock formations for both

Figures 45 and 46 tends to confirm the lack of a significant _——

temperature gradient. Even without the temperature gra-

dient, the structural term contributes to a non-zero flux
divergence. Aw;pn a polycrystalline linestripe, a flux ' {
divergence should occur at any temperature when Ja is non-

zero. The time required to failure will be a function of ;:fi
the temperature and the current density. Further data ‘lj

collection and statistical analysis should determine the

relative magnitude of these two contributions toward a fail-
ure time while an investigation of the stripe morphology

will lead toward a better understanding of flux divergence.
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Iv-2, TEM Technique

Design of The MARK II Holder The design and fabrica-

tion of the MARK II Holder presented some initial problems
which were eventually solved. The initial attempt consisted
of mounting the test vehicle and Gold on Alumina bonding ju;;

block on the existing furnace stage as shown in Figure 47.
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First Attempt at Holder Design

Figure 47.
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The wires were disconnected from the furnace and the temp-
erature sensing diode and rerouted from the holder's con-
necting block to the Alumina bonding block on top of the
furnace. Initial insertion into the TEM resulted in the

removal of both the sample and bonding block from atop the

- & 2 ¥ F F_F . . v A
R T e R

furnace stage during extraction from the TEM. Internal
examination of the specimen port on the TEM revealed the
. existence of an access door which rides on rollers across
the upper and lower surfaces of’the heating holder furnace
stage. The test vehicle, routing wires, and bonding block
> all had to recessed beneath the upper and lower surfaces of
the furnace stage in order to allow proper insertion and
removal of the test vehicle. This was accomplished through
B !;; a new and unique redesign of the entire stage area of the

heating holder as shown in Figure 32, page III-22. A MOSIS

NMOS test vehicle was utilized for the initial testing of

. the redesigned holder which is shown mounted in Figure Uu8.
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oy Wire bonding the test stripe to the Alumina bonding block
required fabrication of a plexiglass holder designed to
secure the holder and support its weight while being bonded.
Bonding was then easily accomplished after some unique set-
tings were made on the bonding machine for depth and draw of
the bonding wire. The holder was operationally tested by
inserting it into the TEM to take before run test stripe
pictures in tﬁe SEM mode of the TEM. Some electron charging
Wwas noted which required the fabrication of a grounding
harness which connects the four banana plugs of the MARK II
to case ground of the TEM. Additionally, it was found that
silver painting all surfaces of the test vehicle not asso-
clated with the stripe under test greatly reduced the char-

(? ging interference. During the photographing of the test
vehicle, it was noted that the field of vision of the TEM in
higher magnifications is restricted laterally to the area
between the outer edges of the two inside gold stripes on
the Alumina bonding block (see Figure 35). This first NMOS
test vehicle was mounted half outside this area and thus
only half the §tripe was able to be photographed above 500x.
Subsequent test vehicles were placed within the high magni-
fication field of vision. After the test stripe was mapped
in the SEM mode, the holder was removed and placed in the
vacuum holding box shown in Figure 34 to accomplish the

electromigration run verification.
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The experimental conditions were:

Experiment #1 Initial Holder Acceptability Test

Test vehicle used - MOSIS NMOS pattern Q-R (see Figure
13).

Line Width - 3 micron

Line Thickness - 1.38 micron (Dektak measurement)
Cross sectional area (Determined by SEM) - 6.9x10'9cm2
Current Density - 3x106a/cm?

Required Current - 93.15 ma

Test Situation - Conducted in vacuum Holding Box
Ambient Temperature - 21,110C

Vacuum (box) - 1.5x10-3 torr

Resistance - 6.0 ohms

Current Density - 3.5x1064/cm?2

Applied Current - 93.8 amps

The TEM settings were:
Vacuum - 6.0x10-8 torr
Emission Current - 95-100 microamps

Accelerating Voltage - 100 kv

The initial evacuation of the vacuum box holder indicated a
need to add a spacer block to the 1id to prevent the sides
from caving in under low pressure. The electromigration run
was interrupted several times for progress observation and

photograph mapping of the stripe.
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The electromigration test run terminated due to open
circuit failure after 76059 minutes. Figure 49 shows SEM
mode photographs taken in the TEM of a section of the stripe

before, during and after the test run.
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Figure 49, Zlectromigration Effects on Test YVehicle
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Inall cases above, the electron flow is up. As shown, the
hillocks have formed "down stream" of the voids. This is in
agreement with publishel information on electromigration
(8:142; 25:234, 26:1413). With this confirmation that the
MARK II holder can be used for electromigration studies, the
Bridge Test Vehicle was designed and fabricated for TEM
related studies.

Aluminum Bridge Test Vehicle. The design and fabrication of

a test vehicle in which the underlying Silicon substrate is
completely removed from the Aluminum stripe proved to be a
formidable task. Initial attempts were made to both
mechanical drill and laser drill holes in the Silicon wafers
then back fill with photoresist or mounting wax. A diamond
tipped dentist burr was used to successfully drill holes in
the wafer. This proved unacceptable in that the perimeter
of the hole was cracked and chipped. Additionally, the
minimum size hole realizable was > 300 microns. The drilled
holes could not be arrayed on the wafer to any extent be-
cause the wafer would not stand up to the stress of multiple
drilling. Thenlasered holes on the other hand were success-
fully arrayed to a 3x3 pattern on a 3.81cm wafer. These
holes, however, were also very rough around the perimeter
and although smaller then the drilled holes, they were still
over 250 microns in diameter., An Aluminum linestripe 2000
angstroms thick and less then 10 microns wide would have

difficulty supporting itself a:ross a void that size.
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The process which proved most promising with respect to
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the hole size and array capability was the KOH directed etch
technique. A major portion of the thesis research period
4#as devoted to developing this technique of etching an array
of holes from the back side of <110> wafers. Experimenta-
tion included determination of the proper oxide thickness to
protect and mask the 13 mil wafer during etching, and deter-
mining the required etch time versus temperature to use. An
Array of holes, masked with the CTV Source/Drain mask etched
in a trapezoidal shape, measuring only 9 microns wide.
Subsequent attempts at filling the holes with photoresist or
mounting wax proved unacceptable. The photoresist repeatedly
shrank into the hole during bakeout while the wax went into
partial melt during Aluminum evaporation due to radiated
heat in the metal evaporation system. The Picolastic D100
mounting wax, however, was c¢rucial in the successful solu-
tion to the Bridge Test Vehicle design problem when it was
used to form an etchant mask.

The Bridge Test Vehicle was successfully designed using
the Bell Lab; test vehicle, and manually painting on a wax

mask on the back side of the pattern prior to back side

etching of the wafer. Details of this technique are pre-
sented in Appendix A. This technique results in a hole
etched thru the Silicon, as shown in Figure 19, section III,
where 1 or more stripes are either freely suspended or
supported by the underlying oxide window, depending on the

amount of etching time provided. The following observations
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were obtained from inspection of several test vehicles

during etching.

Table IV.

Effects of Etching Time of Bridge Test Vehicle

Wafer: 9 mil <111> Boron Doped 1.5>"
Oxide: 3000 angstroms Wet Thermally Grown

Etching

Time (Minutes) Results
25 No light visible from underside
30 Light Barely Visible from underside
32 Patterns exposed with oxide windows
34 Oxide etched away
36 Aluminum Stripes Destroyed

The light source was directed upward from beneath the micro-
scope through the sapphire disk on which the test vehicle
was mounted. The Picolastic D100 wax is clear and observa-
tions were madé.at 400x. The ideal case is that in which
the oxide is thinned as much as possible without being
completely removed. Figure 50 shows the test stripe of a

BTV taken in the STEM mode of the TEM.
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rfigure 50. STEM Photograph of Bridge Test Vehicle, 800x .;f
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hEe
The thinning oxide is clearly visible toward the center of
the etched out hole. The thinner the oxide, the less inter-
ference there Qill be in the diffraction patterns of the .
test stripe. A diffraction pattern of the oxide window is
shown in Figure S1. )
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a) STEM of SiOp Window b) Si0p Diffraction Pattern
8300x

Figure 51, Diffraction Fattern of Underlying 3102

Trhis pattern must be considered when analyring the diffrac-
“ion patterns obtained during the electromigration stress
testing in the TEM. o

Electromigration Diffraction Patterns The main objec-

tive of designing TEM apparatus and test vehicles with which
to conduct electromigration in situ i3 to be able to analy-
sis grain structure and crystallographlic changes which may

occur as a resulit of electromigration. Graian structure
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LY analysis can be obtained with photographs of the Bridge Test N
Venhi~le taken in the STEM mode as shown in Figure 50 above.
Crystallographic analysis is obtained from bright field

illumination and diffraction patterns taken in the TEM mode

as shown above in Figure 51 and 1in Figure 52.

N a) Bright Field STEM of Al Stripe b) Diffraction Pattern
@ 8300x

Figure 52. Diffraction Pattern of Aluminum Stripe
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Figures 51 and 52 are the prestress pictures of the Bridge
Test Vehicle which was mounted and bonded in the MARK II

holder as shown in Figure 53.

Figure 53. SEM of BTV in Place on MARK II Holder, 20x

The etched holes in the BTV are clearly visible and are

depicted at increased magnifications in Figure 54,
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a) Oxide Window Holes b) Larger Hole, 3800x
in BTV, 530«x

Tigure 54, Bright Field STEM of Etched Holes in BTV
"9
ne tenter strip2 acre9s the thinnest region of the oxide R
ver tne largz2r of the two holes was photo-mavped in the T d
9
TEM gcde and i3 depicted 23 a mosaic reconstruction of the ’
K

trizce in Figure 55.
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The experimental conditions were:

Equipment #2 - In Situ Stress Run For Crystallographic
Analysis.

Test Vehicle Used - Aluminum Bridge Test Vehicle.

" ——

Line Width - 9.24 microns
Line Thickness - 1900 Angstroms (Dektak measurement)
l Cross Sectional Area (Determined by SEM) - 1.76x10-10cm?

Current Density - 2x100A/cm?2 for 3 minutes then
1.5x106A/cm

Required Current - 35.1ma and 26.33ma

' Actual Current - 35.1ma and 26.33ma
Test Situation - Conducted in situ under 6x10-8 torr

Ambient temperature - 21.110C

» ——

| X Vacuum - 6.0x10-8 torr
Resistance - 285 ohms

l The TEM settings were:

Vacuum - 6.0x10-8 torr

Emission Current - 95-100 microamps
Accelerating Voltage - 100 kv

Aperture ;-Third, Field Limiting, 200um

Length - 76cm ff;fa

The test vehicle was then powered in situ. Examination of e
the test stripe after 3 minutes at 2x106A/cm2 revealed that :
massive voiding and accumulation was occurring. Current

- density was then reduced to 1.5x1064/cm2 to prevent failure.

After 16 minutes total stress time, the stripe was again
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photo-mapped and the changes in the stripe can be seen by ;. ';
comparing the mosaic reconstruction of the stripe in Figure
56 with the prestress mosaic in Figure 55. v
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Figure 56. Post Stress Mosaic of BTV Stripe
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Electron flowor "electron wind" in Figure 56 i3 from top to
bottom. The accumulations have occurred at the anocde and
voiding at the cathode, which is in agreement with published
findings {(12:485; 75:263; 77:201). The diffraction pattern

of a voided area is shown in Figure 57.

a) STEM of Voided Area, 6600x o) Siffraction Pattern

Figure 57. Crystallographic Micrographs of Voided Stripe

comparison of Figure 57b with Figure 52 shows a less
intense pattern in the voided area indicating that the area

is indeed thinning but is still crystalline in structure.
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Dramatic changes in crystal structure is evident in the
linestripe when the experiment is permitted to progress to
failure. This was the case with experiment # 3. The BTV

was mounted and bonded as shown in Figure 58.

Figure 58, BTV Mounted in MARK II Holder, 20x

The processing of this BTV yielded two holes over two sepa-

rate patterns as shown in Figure 589. -
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“igure 59. DJual Etched holes in BTV of Experiment #3, 300x

Jhe ncle over the pattern stressed in experiment #3 1is

TV

v. LERhES

cizted in Figure 50, The experimental conditions were:

Zxperiment #3 - In Situ Stress Run to Failure

egt JVehisle Used - Aluminum Bridge Test Vehicle.

LA S

- Line Width - 6,75 microns

Line Thickness - 1900 Angstroms (Dektak measurement)

.. -v,

Zross Sectional Area (Determined by SEM) - 1.76x10'80m2
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Current Density - 1.0x106A/cm2 and
2x1064/cm2

Required Current - 11.6ma and 25.65ma

Actual Current - 11.6ma and 25.7ma

Test Situation - Conducted in situ under 6x10-8 torr
Ambient temperature - 21.110C

Vacuum - 6.0x10-8 torr

Resistance - 480 ohms

The TEM settings were:

Vacuum - 6.0x10-8 torr

Emission Current - 95-100 microamps
Accelerating Voltage - 100 kv

Aperture - Third, Field Limiting, 200um

Length 76cm

The stripe was stressed for 4098 minutes at 1x100A/cm2 then

increased to 2x1084/cm2 to accelerate the electromigration

process. Failure occurred at 4203 minutes. The point of

failure is depicted in Figure 60.
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Figure 60.

Figure 61

Bright Field TEM of Failure Point,

depicts the grain structure change of the stripe.
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a) Prestress b) Post Failure
Figure 61. Bright Field TEM of Linestripe, 25000x
k'_'.
bi Cczparison of Figures 61a and b indicate that the crystal-
}. : . A
_ine Zgrain structure of the test stripe after being -
L str2s2ei tended increase in size. Indications are that this
' .5 du= .n part to the annealing affects of the joule heating
. : '3 s
1 sresent juring the failure of the line stripe. A video
’ tak=n during an eiectromigration run clearly shows the wave :jﬁ{
b " -.
L 2f reat emanating “rom the fallure point shown in Figure 60 -
3 and the immediate ahange in *he grain structure of tae
p
3 linestiripe.
J
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(9 The change in diffraction patterns can be seen in Figure 62

“ith the oxide window diffraction pattern depicted in Figure 63.
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a) Prestress b) Post Failure

. Figure 62. Diffraction Patterns of BTV Experiment #3 Zif
@
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(A ~- Figure 63. Diffraction Pattern of Oxide Window, .

. Figure 62 shows the change in crystalline structure from a 7;?

% polycrystalline structure to one which has two phases: n;

ji single crystal and many fine grains which can be attributed &iﬁ
to the annealing effects of the joule heating (34:12; m
35:75) . i%;

.; The results and discussion of this effort clearly show

e progress in the technique of electromigration analysis. The

EE mating of the SEM with a prototype microminiature Joule-

5 Thompson refrigerator provides the capacity to view in situ,

T the effects of electromigration in the high current density,

: e 1ow temperature range. Electromigration damage has been

N Iv-91
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observed at cryogenic temperatures. The refrigerator pro- :;;f
vides the opportunity to precisely control the temperature ifii
variable and temperature gradients across the test pattern. giii
This precision will lead to more consistent statistical jgf%
analysis of reliability data derived from electromigration f13§
Studies. .Vl::

The technique for the in situ observation of electromi- f'
gration damage in the TEM has been demonstrated. The incor- f.i]
poration of the bridge test circuit afforded the chance to E-:.
examine the changing morphology of a polycrystalline line- ; _i
stripe through the use of the STEM mode of operation and the i‘.|

TEM diffraction patterns. With this technique, the effects
of a failure on the morphology of the linestripe has been

?;‘ observed and documented.
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!; Conclusions and Recommendations

The research effort accomplished to date has estab-
lished a baseline for future research. With equipment
already available at the institute, techniques for the in-
vestigation of electromigration and device reliability have
been demonstrated. By interfacing the SEM with a prototype
cold stage, electromigration was observed in situ. New data
points were collected from previously untouched temperature
and current density regimes. Electromigration was shown to
occur at cryogenic temperatures. A technique for the in situ
observation of electromigration damage in a TEM was demon-
strated. The bridge test vehicle was developed to allow for
the unique TEM monitoring of crystallographic and grain
boundary changes due to current stress. Changes in the
crystallographic structure of a stripe under stress was
observed using TEM diffraction patterns. These two related
efforts open up new opportunities for the institute to

conduct research on Reliability Physics.

Recommendations

The resulfs of this work lead the way to numerous
follow on investigations. The collection of data is but a
small part of the overall research effort. Many new ideas
and techniques are ready for investigation. The expansion of
laboratory facilities would provide nearly unbounded growth
in many research directions. This work is a start toward a

continuing effort in Reliability Physics research.
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The following recommendations Wwould enhance this effort;

1. Acquire a SEM. To be a viable research effort, a SEM is
needed with sufficient growth potential to keep up with
future research efforts.

2. Fabricate, through the MOSIS system, test vehicles that

include planar diodes under the test stripe, as described in

?' chapter II., This would offer a better understanding of the
'. temperature profile of the test stripe.
3. Perform electromigration experiments, holding T con-

stant while varying J. More data points are needed for a

E~ thorough statistical analysis of the data base.

i, Perform electromigration experiments, holding J con-
stant while varying T. A statistical analysis of the data is

the objective,

o

5. Perform electromigration experiments, varying either J
or T while operating in a controlled atmosphere ranging from
hydrogen to methane.

6. Seal the microminiature refrigerator while it is not

R rvt': '
« L :

in use to prevent moisture from entering the system and
E‘ causing subsequent clogs.
7. A redesign of the timer circuit is required to handle

the high power requirements. Minimum potentiometer rating

should be 5 watts. Move the readouts and 6 second light so
that they are easily visible at eye level. Replace the 6
second 555 timer with either a crystal oscillator or a 60hz

- monitor to increase the accuracy of the timer.
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8. Perform comparison experiments for electromigration
damage between glassivated and non-glassivated line stripes.
The test vehicles are currently available at the institute.
9. Acquire strip recorders for the continuous monitoring
of test current, stripe temperature and gas flowrate. This
will help validate results of test runs by insuring that the
set parameters were maintained for the duration of the
experimental run.

10. Acquire a programmable temperature controller that
will control the temperature of the microminiature refrig-
erator. Coupled with the Z-100, programs can be created that
allow for the investigation of electromigration using the
TRACE technique (82; 83).

11, Mount the bridge test vehicle on the cold stage of the
microminiature refrigerator. The suspended stripe, with no
contact with the cold stage, should heat up above the temp-
erature of the rest of the stripe. This will increase the
probability of EMD in the bridge area. EMD can then be
studied in a preselected area with a reasonable probability
of localizing the damage to the area of interest.

12. Build bri&ge circuit test vehicles on <110> silicon
wafers. After dicing, the test vehicle is then prepared for
etching as per chapter III. A KOH directed etch is then used
which should offer better control of the hole geometry.

13. Fabricate a pattern and hole mask set which will allow

for easy alignment from opposite sides of the wafer. Hole

mask should be narrow lines which will line up perpendicular
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to the test stripes on the test pattern mask.
| 14, Modify redesign of EM-SHH holder with spring contacts
to both hold down the sample and facilitate electrical
contacting of the test vehicle.
I 15. Design a new MOSIS NMOS pattern with thick leadouts
| from the bonding pads (pads 1/4" apart) to a short electro-
migration teststripe (< 200 microns long). This will
i facilitate massive etching techniques from the back side and

limit the required observation area under the SEM/TEM.
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APPENDIX A

ALUMINUM BRIDGE TEST VEHICLE
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ALUMINUM BRIDGE TEST VEHICLE

The fabrication of the aluminum bridge test vehicle,
(BTV), for use in the crystallographic studies of electro-
migration involves several photolithographic processes, some
common, wWhile others quite unique.

It is most important to start with a clean wafer of
known orientation. The wafers used are 7 mil thick boron
doped silicon wafers. The diameter of the wafer is 1.5
inches with a resistivity of 10-20 ohm-cm. The crystallo-
graphic orientation is <111>, To obtain a bridge test

vehicle, proceed as follows; ,7- ’

1. Clean the wafer using the following solution and times:
3:2 HpSOy:H,0, !0 minutes (Sulfuric Acid:Hydrogen

Peroxide).

DIW 5 minutes (Deionized Water) ftifﬂ
10:1 DIW:HF 5 minutes (DIW:Hydrofluoric Acid) T
_—._-!
spin dry as required )
2. Grow an oxide on the surface of the wafer. The oxide

will insulate the linestripe from the substrate, help sup-

port the linestripe during subsequent etching, and protect ;:}_:
the pattern from the etchant. At 1050°C, a wet oxide should PO
be grown to a thickness of 3000 angstroms. The approximate ~i;:i

time will be 60 minutes in steam.
3. Deposit Aluminum on the surface of the wafer., A maximum
of 2000 angstroms should be evaporated on the surface. A

minimal thickness is required for TEM beam penetration. The

A-2
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evaporation pressure used was 2x10-% torr at ambient
temperature.

y, Spin on waycoat 43 cps negative resist at a rate of
5000 rpm for 20 seconds.

5. Prebake wafer at T70°9C for 20 minutes.

6. Expose the resist using a mask aligner loaded with the
Bell Labs pattern. Exposure is for 7 seconds.

7. Postbake the wafer at 150°C for 30 minutes. -
8. Develop the resist. Mount the wafer on a spinner and

spin at a rate of approximately 1000 rpm. Develop using the

following sequence:

Predeveloper 20 seconds
Xylene 30 seconds
Butyl Acetate 25 seconds
N, Dry off 40 seconds
9. Etch the wafer by immersion in a solution heated to

509C that is composed of:
120 ml  Hypo, (Phosphoric Acid)
120 ml DIW

7 ol HNO3 (Nitric Acid)
7 ml cH3COOH  (Acetic Acid)
Etch the wafer until the pattern emerges. The time required
for a 2000 angstrom thick deposit i3 approximately 2 minutes.
10. Rinse the wafer in DIW to remove all traces of the
etchant.
11, Dry with a N2 blowoff.

12. Remove negative photoresist from the pattern in a

A-3




plasma asher.

13. Mount the wafer on a dicing saw and dice the patterns.
Separate the individual test vehicles.

14, Clean the test vehicle by ultrasonic bath in the

following sequence:

C2H3C13 10 minutes (Trichloroethylene)
CH3COCH3 10 minutes (Acetone)

CH3OH 10 minutes (Methyl Alcohol)
DIW 10 minutes

Spin Dry 10 minutes

15. Probe the four meanders on the pattern for continuity.
16. Optically inspect meanders for good definition.

17. Melt adrop of clear Picolastic D100 mounting wax on to
the surface of a clean sapphire disk which is heated to
95°cC.

18. Press the test vehicle into the wax with the pattern
side down.

19, Melt wax onto the perimeter of the test vehicle,
leaving only center third of the vehicle exposed.

20. Draw strands of wax across the exposed area to form two
exposure windo#g which will center between two meander pat-
terns on the reverse. Each etched hole will clear Silicon
from beneath the center few lines of the two side by side
patterns. Allow the structure to cool.

21, Immerse the sapphire disk with the test pattern for 10
seconds in a solution of 10:1 DIW:HF to remove the oxide

over the remaining exposed substrate.




R 22. Etch the test vehicle substrate mounted on the sapphire

o disk by immersion in a solution of 10:6:6 Acetic Acid:HF
Acid:Nitriec Acid. The approximate etching time is 35 minutes
total. Initial immersion should not exceed 25 minutes.
Inspect for light shining through and reimmerse for two
minute intervals until 1light is observed through the etched
hole.

23. Continue etching for one minute intervals and check for

oxide thinning by removing the disk from the etchant,

Pinsing with DIU, drying with N2 blowoff, and inspecting

{. under the microscope.

[ CAUTION

Additional etch time will expand the hole

through the substrate. Eventually, the etchant will
break through the oxide layer directly under the
test pattern, which will result in damage to the
test circuit.

24, Remove the oxide with repeated 10 second dips in 10:1
DIW:HF Acid.

25. Soak pattern in Acetone overnight to facilitate removal
of the test vehicle from the sapphire disk.

26. Rinse off remaining wax under gentle Acetone spray.

27. Remove the Acetone by dipping the test vehicle in Methyl
Alcohol.

28. Rinse the test vehicle with Freon and dry with a gentle
No blowoff.

29. Probe the test pattern to determine electrical continuity.
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30. Mount the test vehicle on the MARK II Holder as per

L,
'
l‘,‘

B
.
3
s
L

L=

chapter III.

31. Wire bond to the appropriate bonding pads required for

testing.
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MICROMINIATURE REFRIGERATOR SYSTEM
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MICROMINIATURE REFRIGERATOR SYSTEM

An essential part of this thesis is the ability to
monitor test vehicle temperature and maintain the vehicle at
a low temperature while running an experiment. This capacity

is provided by the use of a prototype microminiature re-

frigerator system, manufactured by MMR Technologies Inc.. The

system consists of an experimental cold stage connected
3 through a feedback loop to a temperature controller. Some AT
support equipment is required and there are limitations on

the cooling capacity of the system. The refrigerator op-

erates on the Joule-Thompson effect of capillary cooling
(23:164; 47:337; 56:662; 59:13). Extensive information can
be found in the users manuals for both the cold stage and

the temperature controller (20; U44),.

The basic refrigerator is the Model K2205, shown in
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Figure 64,
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/ Coldstage

Electrical Lead Pins
(Internal Ends)

}\
Electrical Lead Pins /'

(External Ends) :,:._'_.--

Figure 64. Standard Refrigerator mel
Source:(20:5) B

The heart of the refrigerator assembly is a thin quartz

slide that has capillary tubes that meander through the

slide body. These capillaries provide a means of removing

heat from the cold stage by cycling high pressure Nitrogen ?}F
gas through the refrigerator. The tubes are connected at one
end to an outside gas supply and run under the cold stage e
end of the ref;igerator, where the sample is mounted. Once OO
the gas cycles through the refrigerator, it is exhausted to
the atmosphere. Y
The sample 13 mounted on the cold stage end of the

refrigerator by silver paint. The thermal resistance between
the device and the mounting pad is about 60mK/mW (20:13).

Good thermal contact 1s essential for proper operation of
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the cold stage. The temperature is monitored by a cold stage
diode under the mounting pad on the refrigerator,
Electrical power is provided to the <cold stage diode

and the refrigerator heater element through a wiring harness

that connects to the refrigerator through a pin socket.
Power to the sample is provided by connecting wires to the

lead pin ends that protrude from the base of the refrigera-

tor. The smallest possible wires should be used to minimize N
the heat leakage from the wires into the sample (20:5). With
the refrigerator connected to electricity and gas, the

assembly 1is now ready for a controlled environment. l:3Q

The refrigerator will slide in through the end of the

vacuum chamber jacket and be sealed inside by the refrigera-

tor base. Once sealed, the atmosphere seen by the sample can Sl

be changed, monitored, or pumped out. Observation of the

sample takes place through a window on the vacuum chamber
Jacket. Once in the desired atmosphere, the refrigerator
assembly is connected to the K-77 Temperature Controller and

the required temperature can be set.

The K-77 Temperature Controller, shown in Figure 65, S
controls the temperature of the cold stage through a temp-

erature range of 373 K to 76 K (20:1).
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Temperature
Set Button

Scale Switch

Auxiliary
‘ Power
Supply -
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Select
Knob

W

'

Connector Harness

Refrigerator
Harness

Figure 65. K-77 Controller Diagram
Source:(44:6)

The controller senses the temperature from the diode located

under the mounting pad and adjusts the temperature to above

minimum with the resistor heater also located under the

mounting pad. The controller rapidly changes the temperature O p
toward the desired setting, and then maintains it to within TT??
2° throughout the range of 76 K to 323 K. The system dis- -;

plays temperature in either Kelvin or Centigrade and can be ihﬁ:

operated up to 373 K with a loss of the 2° accuracy. The
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temperature accuracy at 373 K is about +6/-0 K (44:2),
Accuracy is limited by the non-linearity of the diode over
a wide temperature range (44:2). Temperatures below 80 K
require a vacuum assist (44:1). The rate of temperature
change usually exceeds 19/sec., To reach the full potential
of the refrigerator, some support equipment is required.

Besides electrical sources to power ‘he diode and
heater elements, another source will be required to power
the test vehicle on the cold stage. The specifications are
determined by the experiment at hand. A Nitrogen gas supply
is required for cooling. A maximum pressure of 1800 psi is
allowed. The system will run on less pressure, but the heat
dissipation capacity of the refrigerator will diminish. 1In
addition, to reach the lowest temperatures, a vacuum assist
is required on the Nitrogen exhaust port. The vacuum system
should be capable of maintaining 5 millitorr or better
(20:14). At full capacity, there are limits on refrigerator
operation.

Limitations on the refrigerator must be abserved to
avoid undesired effects. At 76 K, the refrigerator is cap-
able of dissipating 250mW of power from the test vehicle on
the cold stage (20:1). This places limits on the power that
can be placed on the test vehicle without affecting the
refrigerator operation. Gas pressure must not exceed 1800
psi to avoid damage to the capillary tubes. The introduc-
tion of high pressure gas lines into a vacuum environment

can be hazardous to equipment. The refrigerator system is

B-6




not compatible with a vacuum of 10'6 torr or better due to

L

i ) the possibility of nitrogen out-gas contamination of the

" vacuum system (106). Observance of these limitations will

; lead to the attainment of published performance for the

i refrigerator systen.

The Model K2205 with the K-77 Temperature Controller

allows for the unique temperature control of a test vehicle

i under powered conditions in a controlled environment. De-
tailed discussions of the design and operation of the temp-
erature control system and refrigerator can be found in

; references 44 and 20 from MMR Technologies Inc..
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. : TIMER CIRCUIT
! The electromigration process may take a long time. By
S incorporating a timing device which operates as long as a
5 closed circuit is detected in the electromigration circuit
! the elapsed time from power application and/or time to
failure can be accurately measured by electrical means. The
electromigration test circuit and timer interface are shown ; ;;;
i in Figure 66. :
’ .
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Figure 66, Electromigration Circuit with Timer Interface

The test circuit current and hence current density are
controlled with the variable resistors (R6 and R7) and
monitored by the ammeter. The ammeter need not be on con-
tinuously and is isolated from the circuit except during

current readings. By switching off the VOM switch (swt2),
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the ammeter is bypassed. The circuit is constructed such
that the current density everywhere outside of the test
pattern 1s inconsequential, compared with that required for
accelerated electromigration. The test circuit is monitored
on the power supply side of the test stripe. At this loca-
tion, either a failed test stripe or open EM switch (swt 1)
will result in a positive voltage being present. A closed
test circuit (swt 1 closed and current flow through the test
stripe) results in an essentially 0 voltage reading at the
monitoring point in the test circuit. The timer circuit
utilizes an op amp to detect the voltage at the monitoring
point. The op amp has a high input impedance which results
in a negligible current flow from the test circuit into the
timer circuit. Op amp output is used to enable a 6 second
timer via a 5 volt zener diode (D1) as shown in the schema-

tic diagram in Figure 67.
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Figure 67. Timer Schematic Diagram

The associated parts list for the schematic diagram is given

in Table V.
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Table V.

Timer Parts List and Description

N DIAGRAM # PART # TIMER USE
. D1 IN?14 S VOLT ZENER DIODE
: D2 4-7382B MONITORING GREEN LED
DZ-D7 HP7340 S HEX DISPLAYS
IC1 741 DETECTOR QOF AMP
- IC2 555 & SECOND TIMER CHIP
i IC= 7473 JK. MONITORING FLIP FLOP
. 1Ca 7490 DIVIDE BY 10 COUNTER
ICS-1C? 74290 S HEX DISFLAY DRIVERS
IC10 335 RESET TIMER CHIP
ci-c2 10 uF TIMING CAPACITORS
: CZ-CS .1 uF NOISE SUPPRESSION CAPACITORS
b‘ C6-C7 .01 uF NOISE SUPFPRESSION CAFPACITORS
R1 20K Ohm TIMING POTENTIOMETER
R2 1.1 Obm TIMING RESISTOR
R3 1K Ohm TIMER THRESHOLD RESISTOR
R4 100K Ohm RESET TIMER RESISTOR
. RS 330 Ohm RESET TIMER RESISTOR
i ﬁ;‘ R& SK Ohm EM CURRENT ADJUSTMENT FOT
' R7 200 Ohm EM CURRENT ADJUSTMENT FOT
] Z0 Ohm DIODE RESISTOR
SWT1 SPST EM ACTIVATION SWITCH
SWTZ DFST VOM SWITCH
FB1 SFST RESET PUSHBUTTON
. ]
; The 6 second timer is constructed from a 555 timer chip
and adjusted through variable resistor R1 to provide a pulse
every 6 seconds as long as its reset pin (pin 4 which is -
> connected to the op amp output) is maintained at 5 volts.
The op amp enables the timer by providing this 5 volt signal
. as long as it detects 0 voltage at the monitoring point in
; - the test circuit. The zener diode prevents the op amp from —
;; ‘ sending anything larger then 5 volts to the timer,. The
d




°

timer will provide a pulse every 6 seconds to the rest of
the timer circuit as long as the test circuit remains a
closed circuit. This pulse is monitored by the JK flip flop
(IC3) which cycles the associated LED (D2) on and off every
6 seconds, allowing the timer to be calibrated using the
adjustable resistor connected to the 6 second timer (R1).

The 555 output pulse is also fed into a TI7T490 decade
counter chip (ICH). This integrated circuit serves as a
divide-by-10 counter and provides a signal once for every
10 signals it receives from the 6 second timer thus pro-
viding a minute count of elapsed time. This minute count is
sent to a second decade counter (IC5) which drives its
corresponding hex display (D3). The hex display is an HPT7340
chip. There is one decade counter for each of 5 hex dis-
plays. The displays are cascaded so that the next display is
incremented after the previous display transitions from a 9
to a 0., With five displays, a running time of up to 69.4
days (99999 minutes) can be recorded. When the 6 second 555
chip is disabled by the op amp, the hex displays freeze the
elapsed time until timing is resumed or reset for another
run by the resé£ timer (IC10) via its corresponding reset
push button (PB1).

The timer circuit is encapsulated in a transparent
plexiglass box which provides protection for the circuit
while allowing observation of the hex displays. The timer
/test circuit controls and interconnecting plugs are mounted

on the removable rear panel of the box as shown in Figure 68,

C-7
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Figure 68. Timer Rear Panel Diagram

® Banana plugs are used to connect the timer/test circuit to
its power supply, the ammeter, and the electromigration test
sample.
These banana plug connections on the rear of the timer
allow for simple modifications to the basic electromigration

circuit setup. By making the connection changes shown in

Figure 69 (as compared with Figure 66), the timer device can
be modified to incorporate an external adjustable high power

rated resistor for unique electromigration studies.
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Figure 69. Modified Timer Setup for External Resistor lﬁ?h

In the same manner, the connections can also be changed to
accept a larger,external power supply (external in that it
is in addition to the +/-12 volt supply which is normally T;‘

used to power the electromigration circuit as well as the op

amp monitor). These changes are depicted in Figure 70 (as 5¢”

compared with Figure 66).
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Figure 70. Modified Timer Setup for External Power Supply

The timer device described generates an accurate me-
‘ asurement of elapsed time of current application without
interfering with the electromigration process and provides
an easy method of interconnecting the components of the

}
P-_“
#!_ P entire system.
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